
© Copyright IBM Corporation 2007 Trademarks
Anatomy of the Linux kernel Page 1 of 8

Anatomy of the Linux kernel
History and architectural decomposition

M. Tim Jones June 06, 2007

The Linux® kernel is the core of a large and complex operating system, and while it's huge,
it is well organized in terms of subsystems and layers. In this article, you explore the general
structure of the Linux kernel and get to know its major subsystems and core interfaces. Where
possible, you get links to other IBM articles to help you dig deeper.

Given that the goal of this article is to introduce you to the Linux kernel and explore its architecture
and major components, let's start with a short tour of Linux kernel history, then look at the Linux
kernel architecture from 30,000 feet, and, finally, examine its major subsystems. The Linux kernel
is over six million lines of code, so this introduction is not exhaustive. Use the pointers to more
content to dig in further.

A short tour of Linux history
Linux or GNU/Linux?

You've probably noticed that Linux as an operating system is referred to in some cases as
"Linux" and in others as "GNU/Linux." The reason behind this is that Linux is the kernel of
an operating system. The wide range of applications that make the operating system useful
are the GNU software. For example, the windowing system, compiler, variety of shells,
development tools, editors, utilities, and other applications exist outside of the kernel, many
of which are GNU software. For this reason, many consider "GNU/Linux" a more appropriate
name for the operating system, while "Linux" is appropriate when referring to just the kernel.

While Linux is arguably the most popular open source operating system, its history is actually quite
short considering the timeline of operating systems. In the early days of computing, programmers
developed on the bare hardware in the hardware's language. The lack of an operating system
meant that only one application (and one user) could use the large and expensive device at a
time. Early operating systems were developed in the 1950s to provide a simpler development
experience. Examples include the General Motors Operating System (GMOS) developed for the
IBM 701 and the FORTRAN Monitor System (FMS) developed by North American Aviation for the
IBM 709.

In the 1960s, Massachusetts Institute of Technology (MIT) and a host of companies developed an
experimental operating system called Multics (or Multiplexed Information and Computing Service)

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/


developerWorks® ibm.com/developerWorks/

Anatomy of the Linux kernel Page 2 of 8

for the GE-645. One of the developers of this operating system, AT&T, dropped out of Multics
and developed their own operating system in 1970 called Unics. Along with this operating system
was the C language, for which C was developed and then rewritten to make operating system
development portable.

Twenty years later, Andrew Tanenbaum created a microkernel version of UNIX®, called MINIX (for
minimal UNIX), that ran on small personal computers. This open source operating system inspired
Linus Torvalds' initial development of Linux in the early 1990s (see Figure 1).

Figure 1. Short history of major Linux kernel releases

Linux quickly evolved from a single-person project to a world-wide development project involving
thousands of developers. One of the most important decisions for Linux was its adoption of
the GNU General Public License (GPL). Under the GPL, the Linux kernel was protected from
commercial exploitation, and it also benefited from the user-space development of the GNU
project (of Richard Stallman, whose source dwarfs that of the Linux kernel). This allowed useful
applications such as the GNU Compiler Collection (GCC) and various shell support.

Introduction to the Linux kernel
Now on to a high-altitude look at the GNU/Linux operating system architecture. You can think
about an operating system from two levels, as shown in Figure 2.

Figure 2. The fundamental architecture of the GNU/Linux operating system



ibm.com/developerWorks/ developerWorks®

Anatomy of the Linux kernel Page 3 of 8

Methods for system call interface (SCI)

In reality, the architecture is not as clean as what is shown in Figure 2. For example, the
mechanism by which system calls are handled (transitioning from the user space to the
kernel space) can differ by architecture. Newer x86 central processing units (CPUs) that
provide support for virtualization instructions are more efficient in this process than older x86
processors that use the traditional int 80h method.

At the top is the user, or application, space. This is where the user applications are executed.
Below the user space is the kernel space. Here, the Linux kernel exists.

There is also the GNU C Library (glibc). This provides the system call interface that connects
to the kernel and provides the mechanism to transition between the user-space application and
the kernel. This is important because the kernel and user application occupy different protected
address spaces. And while each user-space process occupies its own virtual address space, the
kernel occupies a single address space.

The Linux kernel can be further divided into three gross levels. At the top is the system call
interface, which implements the basic functions such as read and write. Below the system call
interface is the kernel code, which can be more accurately defined as the architecture-independent
kernel code. This code is common to all of the processor architectures supported by Linux. Below
this is the architecture-dependent code, which forms what is more commonly called a BSP (Board
Support Package). This code serves as the processor and platform-specific code for the given
architecture.

Properties of the Linux kernel

When discussing architecture of a large and complex system, you can view the system from many
perspectives. One goal of an architectural decomposition is to provide a way to better understand
the source, and that's what we'll do here.

The Linux kernel implements a number of important architectural attributes. At a high level, and
at lower levels, the kernel is layered into a number of distinct subsystems. Linux can also be
considered monolithic because it lumps all of the basic services into the kernel. This differs from
a microkernel architecture where the kernel provides basic services such as communication,
I/O, and memory and process management, and more specific services are plugged in to the
microkernel layer. Each has its own advantages, but I'll steer clear of that debate.

Over time, the Linux kernel has become efficient in terms of both memory and CPU usage, as
well as extremely stable. But the most interesting aspect of Linux, given its size and complexity,
is its portability. Linux can be compiled to run on a huge number of processors and platforms
with different architectural constraints and needs. One example is the ability for Linux to run on
a process with a memory management unit (MMU), as well as those that provide no MMU. The
uClinux port of the Linux kernel provides for non-MMU support.



developerWorks® ibm.com/developerWorks/

Anatomy of the Linux kernel Page 4 of 8

Major subsystems of the Linux kernel
Now let's look at some of the major components of the Linux kernel using the breakdown shown in
Figure 3 as a guide.

Figure 3. One architectural perspective of the Linux kernel

System call interface
The SCI is a thin layer that provides the means to perform function calls from user space
into the kernel. As discussed previously, this interface can be architecture dependent, even
within the same processor family. The SCI is actually an interesting function-call multiplexing
and demultiplexing service. You can find the SCI implementation in ./linux/kernel, as well as
architecture-dependent portions in ./linux/arch.

Process management
What is a kernel?

As shown in Figure 3, a kernel is really nothing more than a resource manager. Whether the
resource being managed is a process, memory, or hardware device, the kernel manages and
arbitrates access to the resource between multiple competing users (both in the kernel and in
user space).

Process management is focused on the execution of processes. In the kernel, these are called
threads and represent an individual virtualization of the processor (thread code, data, stack, and
CPU registers). In user space, the term process is typically used, though the Linux implementation
does not separate the two concepts (processes and threads). The kernel provides an application
program interface (API) through the SCI to create a new process (fork, exec, or Portable Operating
System Interface [POSIX] functions), stop a process (kill, exit), and communicate and synchronize
between them (signal, or POSIX mechanisms).

Also in process management is the need to share the CPU between the active threads. The
kernel implements a novel scheduling algorithm that operates in constant time, regardless of the
number of threads vying for the CPU. This is called the O(1) scheduler, denoting that the same
amount of time is taken to schedule one thread as it is to schedule many. The O(1) scheduler
also supports multiple processors (called Symmetric MultiProcessing, or SMP). You can find the
process management sources in ./linux/kernel and architecture-dependent sources in ./linux/arch).



ibm.com/developerWorks/ developerWorks®

Anatomy of the Linux kernel Page 5 of 8

Memory management
Another important resource that's managed by the kernel is memory. For efficiency, given the way
that the hardware manages virtual memory, memory is managed in what are called pages (4KB in
size for most architectures). Linux includes the means to manage the available memory, as well as
the hardware mechanisms for physical and virtual mappings.

But memory management is much more than managing 4KB buffers. Linux provides abstractions
over 4KB buffers, such as the slab allocator. This memory management scheme uses 4KB buffers
as its base, but then allocates structures from within, keeping track of which pages are full, partially
used, and empty. This allows the scheme to dynamically grow and shrink based on the needs of
the greater system.

Supporting multiple users of memory, there are times when the available memory can be
exhausted. For this reason, pages can be moved out of memory and onto the disk. This process
is called swapping because the pages are swapped from memory onto the hard disk. You can find
the memory management sources in ./linux/mm.

Virtual file system
The virtual file system (VFS) is an interesting aspect of the Linux kernel because it provides a
common interface abstraction for file systems. The VFS provides a switching layer between the
SCI and the file systems supported by the kernel (see Figure 4).

Figure 4. The VFS provides a switching fabric between users and file systems

At the top of the VFS is a common API abstraction of functions such as open, close, read, and
write. At the bottom of the VFS are the file system abstractions that define how the upper-layer
functions are implemented. These are plug-ins for the given file system (of which over 50 exist).
You can find the file system sources in ./linux/fs.

Below the file system layer is the buffer cache, which provides a common set of functions to the
file system layer (independent of any particular file system). This caching layer optimizes access
to the physical devices by keeping data around for a short time (or speculatively read ahead so



developerWorks® ibm.com/developerWorks/

Anatomy of the Linux kernel Page 6 of 8

that the data is available when needed). Below the buffer cache are the device drivers, which
implement the interface for the particular physical device.

Network stack

The network stack, by design, follows a layered architecture modeled after the protocols
themselves. Recall that the Internet Protocol (IP) is the core network layer protocol that sits below
the transport protocol (most commonly the Transmission Control Protocol, or TCP). Above TCP is
the sockets layer, which is invoked through the SCI.

The sockets layer is the standard API to the networking subsystem and provides a user interface
to a variety of networking protocols. From raw frame access to IP protocol data units (PDUs) and
up to TCP and the User Datagram Protocol (UDP), the sockets layer provides a standardized way
to manage connections and move data between endpoints. You can find the networking sources in
the kernel at ./linux/net.

Device drivers

The vast majority of the source code in the Linux kernel exists in device drivers that make a
particular hardware device usable. The Linux source tree provides a drivers subdirectory that is
further divided by the various devices that are supported, such as Bluetooth, I2C, serial, and so on.
You can find the device driver sources in ./linux/drivers.

Architecture-dependent code

While much of Linux is independent of the architecture on which it runs, there are elements
that must consider the architecture for normal operation and for efficiency. The ./linux/arch
subdirectory defines the architecture-dependent portion of the kernel source contained in a
number of subdirectories that are specific to the architecture (collectively forming the BSP). For a
typical desktop, the i386 directory is used. Each architecture subdirectory contains a number of
other subdirectories that focus on a particular aspect of the kernel, such as boot, kernel, memory
management, and others. You can find the architecture-dependent code in ./linux/arch.

Interesting features of the Linux kernel
If the portability and efficiency of the Linux kernel weren't enough, it provides some other features
that could not be classified in the previous decomposition.

Linux, being a production operating system and open source, is a great test bed for new protocols
and advancements of those protocols. Linux supports a large number of networking protocols,
including the typical TCP/IP, and also extension for high-speed networking (greater than 1
Gigabit Ethernet [GbE] and 10 GbE). Linux also supports protocols such as the Stream Control
Transmission Protocol (SCTP), which provides many advanced features above TCP (as a
replacement transport level protocol).

Linux is also a dynamic kernel, supporting the addition and removal of software components on
the fly. These are called dynamically loadable kernel modules, and they can be inserted at boot



ibm.com/developerWorks/ developerWorks®

Anatomy of the Linux kernel Page 7 of 8

when they're needed (when a particular device is found requiring the module) or at any time by the
user.

A recent advancement of Linux is its use as an operating system for other operating systems
(called a hypervisor). Recently, a modification to the kernel was made called the Kernel-based
Virtual Machine (KVM). This modification enabled a new interface to user space that allows other
operating systems to run above the KVM-enabled kernel. In addition to running another instance
of Linux, Microsoft® Windows® can also be virtualized. The only constraint is that the underlying
processor must support the new virtualization instructions.

Going further

This article just scratched the surface of the Linux kernel architecture and its features and
capabilities. You can check out the Documentation directory that's provided in every Linux
distribution for detailed information about the contents of the kernel.



developerWorks® ibm.com/developerWorks/

Anatomy of the Linux kernel Page 8 of 8

Related topics

• GNU GPL
• The GNU C Library, or glibc
• Kernel command using Linux system calls
• Access the Linux kernel using the /proc filesystem

© Copyright IBM Corporation 2007
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.gnu.org/licenses
http://www.gnu.org/software/libc/
http://www.ibm.com/developerworks/linux/library/l-system-calls/
http://www.ibm.com/developerworks/linux/library/l-proc/index.html
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	A short tour of Linux history
	Introduction to the Linux kernel
	Properties of the Linux kernel
	Major subsystems of the Linux kernel
	System call interface
	Process management
	Memory management
	Virtual file system
	Network stack
	Device drivers
	Architecture-dependent code

	Interesting features of the Linux kernel
	Going further
	Trademarks

