
Debian Policy Manual
The Debian Policy Mailing List

version 3.8.0.1, 2008-06-05

Abstract

This manual describes the policy requirements for the Debian GNU/Linux distribution. This
includes the structure and contents of the Debian archive and several design issues of the op-
erating system, as well as technical requirements that each package must satisfy to be included
in the distribution.

Copyright Notice

Copyright © 1996,1997,1998 Ian Jackson and Christian Schwarz.

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2,
or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses
/GPL in the Debian GNU/Linux distribution or on the World Wide Web at the GNU General
Public Licence (http://www.gnu.org/copyleft/gpl.html). You can also obtain it by
writing to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-
1301, USA.

http://www.gnu.org/copyleft/gpl.html

i

Contents

1 About this manual 1

1.1 Scope . 1

1.2 New versions of this document . 2

1.3 Authors and Maintainers . 2

1.4 Related documents . 3

2 The Debian Archive 5

2.1 The Debian Free Software Guidelines . 5

2.2 Categories . 6

2.2.1 The main category . 6

2.2.2 The contrib category . 7

2.2.3 The non-free category . 7

2.3 Copyright considerations . 7

2.4 Sections . 8

2.5 Priorities . 8

3 Binary packages 11

3.1 The package name . 11

3.2 The version of a package . 11

3.2.1 Version numbers based on dates . 11

3.3 The maintainer of a package . 12

3.4 The description of a package . 12

3.4.1 The single line synopsis . 13

3.4.2 The extended description . 13

CONTENTS ii

3.5 Dependencies . 13

3.6 Virtual packages . 14

3.7 Base system . 14

3.8 Essential packages . 15

3.9 Maintainer Scripts . 15

3.9.1 Prompting in maintainer scripts . 15

4 Source packages 17

4.1 Standards conformance . 17

4.2 Package relationships . 17

4.3 Changes to the upstream sources . 18

4.4 Debian changelog: debian/changelog . 19

4.4.1 Alternative changelog formats . 20

4.5 Copyright: debian/copyright . 20

4.6 Error trapping in makefiles . 20

4.7 Time Stamps . 21

4.8 Restrictions on objects in source packages . 21

4.9 Main building script: debian/rules . 21

4.9.1 debian/rules and DEB_BUILD_OPTIONS 24

4.10 Variable substitutions: debian/substvars . 25

4.11 Optional upstream source location: debian/watch 25

4.12 Generated files list: debian/files . 26

4.13 Convenience copies of code . 26

4.14 Source package handling: debian/README.source 26

5 Control files and their fields 29

5.1 Syntax of control files . 29

5.2 Source package control files – debian/control 30

5.3 Binary package control files – DEBIAN/control 31

5.4 Debian source control files – .dsc . 31

5.5 Debian changes files – .changes . 31

5.6 List of fields . 32

CONTENTS iii

5.6.1 Source . 32

5.6.2 Maintainer . 32

5.6.3 Uploaders . 33

5.6.4 Changed-By . 33

5.6.5 Section . 33

5.6.6 Priority . 33

5.6.7 Package . 33

5.6.8 Architecture . 34

5.6.9 Essential . 34

5.6.10 Package interrelationship fields: Depends, Pre-Depends,
Recommends, Suggests, Breaks, Conflicts, Provides,
Replaces, Enhances . 34

5.6.11 Standards-Version . 35

5.6.12 Version . 35

5.6.13 Description . 37

5.6.14 Distribution . 37

5.6.15 Date . 38

5.6.16 Format . 38

5.6.17 Urgency . 38

5.6.18 Changes . 39

5.6.19 Binary . 39

5.6.20 Installed-Size . 39

5.6.21 Files . 39

5.6.22 Closes . 40

5.6.23 Homepage . 40

5.7 User-defined fields . 40

6 Package maintainer scripts and installation procedure 43

6.1 Introduction to package maintainer scripts . 43

6.2 Maintainer scripts idempotency . 44

6.3 Controlling terminal for maintainer scripts . 44

6.4 Exit status . 44

CONTENTS iv

6.5 Summary of ways maintainer scripts are called . 44

6.6 Details of unpack phase of installation or upgrade 45

6.7 Details of configuration . 48

6.8 Details of removal and/or configuration purging 49

7 Declaring relationships between packages 51

7.1 Syntax of relationship fields . 51

7.2 Binary Dependencies - Depends, Recommends, Suggests, Enhances,
Pre-Depends . 52

7.3 Packages which break other packages - Breaks 54

7.4 Conflicting binary packages - Conflicts . 55

7.5 Virtual packages - Provides . 55

7.6 Overwriting files and replacing packages - Replaces 56

7.6.1 Overwriting files in other packages . 56

7.6.2 Replacing whole packages, forcing their removal 57

7.7 Relationships between source and binary packages - Build-Depends,
Build-Depends-Indep, Build-Conflicts, Build-Conflicts-Indep . . 57

8 Shared libraries 59

8.1 Run-time shared libraries . 59

8.1.1 ldconfig . 60

8.2 Shared library support files . 61

8.3 Static libraries . 61

8.4 Development files . 61

8.5 Dependencies between the packages of the same library 62

8.6 Dependencies between the library and other packages - the shlibs system . . . 62

8.6.1 The shlibs files present on the system . 63

8.6.2 How to use dpkg-shlibdeps and the shlibs files 64

8.6.3 The shlibs File Format . 64

8.6.4 Providing a shlibs file . 65

8.6.5 Writing the debian/shlibs.local file 66

CONTENTS v

9 The Operating System 67

9.1 File system hierarchy . 67

9.1.1 File system Structure . 67

9.1.2 Site-specific programs . 68

9.1.3 The system-wide mail directory . 69

9.2 Users and groups . 69

9.2.1 Introduction . 69

9.2.2 UID and GID classes . 69

9.3 System run levels and init.d scripts . 70

9.3.1 Introduction . 70

9.3.2 Writing the scripts . 71

9.3.3 Interfacing with the initscript system . 72

9.3.4 Boot-time initialization . 74

9.3.5 Example . 74

9.4 Console messages from init.d scripts . 74

9.5 Cron jobs . 77

9.6 Menus . 77

9.7 Multimedia handlers . 78

9.8 Keyboard configuration . 78

9.9 Environment variables . 79

9.10 Registering Documents using doc-base . 80

10 Files 81

10.1 Binaries . 81

10.2 Libraries . 82

10.3 Shared libraries . 83

10.4 Scripts . 84

10.5 Symbolic links . 85

10.6 Device files . 85

10.7 Configuration files . 86

10.7.1 Definitions . 86

CONTENTS vi

10.7.2 Location . 86

10.7.3 Behavior . 86

10.7.4 Sharing configuration files . 87

10.7.5 User configuration files (”dotfiles“) . 88

10.8 Log files . 88

10.9 Permissions and owners . 89

10.9.1 The use of dpkg-statoverride . 91

11 Customized programs 93

11.1 Architecture specification strings . 93

11.2 Daemons . 94

11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog 94

11.4 Editors and pagers . 94

11.5 Web servers and applications . 95

11.6 Mail transport, delivery and user agents . 96

11.7 News system configuration . 97

11.8 Programs for the X Window System . 98

11.8.1 Providing X support and package priorities 98

11.8.2 Packages providing an X server . 98

11.8.3 Packages providing a terminal emulator 98

11.8.4 Packages providing a window manager . 99

11.8.5 Packages providing fonts . 99

11.8.6 Application defaults files . 101

11.8.7 Installation directory issues . 101

11.8.8 The OSF/Motif and OpenMotif libraries 101

11.9 Perl programs and modules . 102

11.10Emacs lisp programs . 102

11.11Games . 102

12 Documentation 105

12.1 Manual pages . 105

12.2 Info documents . 106

CONTENTS vii

12.3 Additional documentation . 107

12.4 Preferred documentation formats . 107

12.5 Copyright information . 108

12.6 Examples . 108

12.7 Changelog files . 109

A Introduction and scope of these appendices 111

B Binary packages (from old Packaging Manual) 113

B.1 Creating package files - dpkg-deb . 113

B.2 Package control information files . 114

B.3 The main control information file: control . 115

B.4 Time Stamps . 115

C Source packages (from old Packaging Manual) 117

C.1 Tools for processing source packages . 117

C.1.1 dpkg-source - packs and unpacks Debian source packages 117

C.1.2 dpkg-buildpackage - overall package-building control script 118

C.1.3 dpkg-gencontrol - generates binary package control files 118

C.1.4 dpkg-shlibdeps - calculates shared library dependencies 119

C.1.5 dpkg-distaddfile - adds a file to debian/files 120

C.1.6 dpkg-genchanges - generates a .changes upload control file 120

C.1.7 dpkg-parsechangelog - produces parsed representation of a changelog120

C.1.8 dpkg-architecture - information about the build and host system . . 120

C.2 The Debianised source tree . 120

C.2.1 debian/rules - the main building script 121

C.2.2 debian/changelog . 121

C.2.3 debian/substvars and variable substitutions 122

C.2.4 debian/files . 122

C.2.5 debian/tmp . 123

C.3 Source packages as archives . 123

C.4 Unpacking a Debian source package without dpkg-source 123

C.4.1 Restrictions on objects in source packages 124

CONTENTS viii

D Control files and their fields (from old Packaging Manual) 125

D.1 Syntax of control files . 125

D.2 List of fields . 125

D.2.1 Filename and MSDOS-Filename . 125

D.2.2 Size and MD5sum . 126

D.2.3 Status . 126

D.2.4 Config-Version . 126

D.2.5 Conffiles . 126

D.2.6 Obsolete fields . 126

E Configuration file handling (from old Packaging Manual) 127

E.1 Automatic handling of configuration files by dpkg 127

E.2 Fully-featured maintainer script configuration handling 128

F Alternative versions of an interface - update-alternatives (from old Packaging
Manual) 129

G Diversions - overriding a package’s version of a file (from old Packaging Manual) 131

1

Chapter 1

About this manual

1.1 Scope

This manual describes the policy requirements for the Debian GNU/Linux distribution. This
includes the structure and contents of the Debian archive and several design issues of the op-
erating system, as well as technical requirements that each package must satisfy to be included
in the distribution.

This manual also describes Debian policy as it relates to creating Debian packages. It is not
a tutorial on how to build packages, nor is it exhaustive where it comes to describing the
behavior of the packaging system. Instead, this manual attempts to define the interface to the
package management system that the developers have to be conversant with.1

The footnotes present in this manual are merely informative, and are not part of Debian policy
itself.

The appendices to this manual are not necessarily normative, either. Please see ‘Introduction
and scope of these appendices’ on page 111 for more information.

In the normative part of this manual, the words must, should and may, and the adjectives re-
quired, recommended and optional, are used to distinguish the significance of the various guide-
lines in this policy document. Packages that do not conform to the guidelines denoted by
must (or required) will generally not be considered acceptable for the Debian distribution. Non-
conformance with guidelines denoted by should (or recommended) will generally be considered a
bug, but will not necessarily render a package unsuitable for distribution. Guidelines denoted
by may (or optional) are truly optional and adherence is left to the maintainer’s discretion.

1Informally, the criteria used for inclusion is that the material meet one of the following requirements:
Standard interfaces The material presented represents an interface to the packaging system that is mandated for

use, and is used by, a significant number of packages, and therefore should not be changed without peer
review. Package maintainers can then rely on this interfaces not changing, and the package management
software authors need to ensure compatibility with these interface definitions. (Control file and changelog
file formats are examples.)

Chosen Convention If there are a number of technically viable choices that can be made, but one needs to select
one of these options for inter-operability. The version number format is one example.

Please note that these are not mutually exclusive; selected conventions often become parts of standard interfaces.

Chapter 1. About this manual 2

These classifications are roughly equivalent to the bug severities serious (for must or required
directive violations), minor, normal or important (for should or recommended directive violations)
and wishlist (for optional items). 2

Much of the information presented in this manual will be useful even when building a package
which is to be distributed in some other way or is intended for local use only.

1.2 New versions of this document

This manual is distributed via the Debian package debian-policy (http://packages.
debian.org/debian-policy) (packages.debian.org /debian-policy).

The current version of this document is also available from the Debian web mirrors at
/doc/debian-policy/ (http://www.debian.org/doc/debian-policy/). (www.
debian.org /doc/debian-policy/) Also available from the same directory are several
other formats: policy.html.tar.gz (/doc/debian-policy/policy.html.tar.gz),
policy.pdf.gz (/doc/debian-policy/policy.pdf.gz) and policy.ps.gz (/doc/
debian-policy/policy.ps.gz).

The debian-policy package also includes the file upgrading-checklist.txt.gz which
indicates policy changes between versions of this document.

1.3 Authors and Maintainers

Originally called “Debian GNU/Linux Policy Manual”, this manual was initially written in
1996 by Ian Jackson. It was revised on November 27th, 1996 by David A. Morris. Christian
Schwarz added new sections on March 15th, 1997, and reworked/restructured it in April-July
1997. Christoph Lameter contributed the “Web Standard”. Julian Gilbey largely restructured
it in 2001.

Since September 1998, the responsibility for the contents of this document lies on the debian-
policy mailing list (mailto:debian-policy@lists.debian.org). Proposals are dis-
cussed there and inserted into policy after a certain consensus is established. The actual editing
is done by a group of maintainers that have no editorial powers. These are the current main-
tainers:

1 Julian Gilbey

2 Branden Robinson

3 Josip Rodin

4 Manoj Srivastava

2Compare RFC 2119. Note, however, that these words are used in a different way in this document.

http://packages.debian.org/debian-policy
http://packages.debian.org/debian-policy
packages.debian.org
http://www.debian.org/doc/debian-policy/
www.debian.org
www.debian.org
mailto:debian-policy@lists.debian.org

Chapter 1. About this manual 3

While the authors of this document have tried hard to avoid typos and other errors, these
do still occur. If you discover an error in this manual or if you want to give any comments,
suggestions, or criticisms please send an email to the Debian Policy List, <debian-policy@
lists.debian.org>, or submit a bug report against the debian-policy package.

Please do not try to reach the individual authors or maintainers of the Policy Manual regarding
changes to the Policy.

1.4 Related documents

There are several other documents other than this Policy Manual that are necessary to fully
understand some Debian policies and procedures.

The external “sub-policy” documents are referred to in:
• ‘File system Structure’ on page 67
• ‘Virtual packages’ on page 14
• ‘Menus’ on page 77
• ‘Multimedia handlers’ on page 78
• ‘Perl programs and modules’ on page 102
• ‘Prompting in maintainer scripts’ on page 15
• ‘Emacs lisp programs’ on page 102

In addition to those, which carry the weight of policy, there is the Debian Developer’s Refer-
ence. This document describes procedures and resources for Debian developers, but it is not
normative; rather, it includes things that don’t belong in the Policy, such as best practices for
developers.

The Developer’s Reference is available in the developers-reference package. It’s also
available from the Debian web mirrors at /doc/developers-reference/ (http://www.
debian.org/doc/developers-reference/).

http://www.debian.org/doc/developers-reference/
http://www.debian.org/doc/developers-reference/

Chapter 1. About this manual 4

5

Chapter 2

The Debian Archive

The Debian GNU/Linux system is maintained and distributed as a collection of packages. Since
there are so many of them (currently well over 15000), they are split into sections and given
priorities to simplify the handling of them.

The effort of the Debian project is to build a free operating system, but not every package we
want to make accessible is free in our sense (see the Debian Free Software Guidelines, below), or
may be imported/exported without restrictions. Thus, the archive is split into the distribution
areas or categories based on their licenses and other restrictions.

The aims of this are:
• to allow us to make as much software available as we can
• to allow us to encourage everyone to write free software, and
• to allow us to make it easy for people to produce CD-ROMs of our system without vio-

lating any licenses, import/export restrictions, or any other laws.

The main category forms the Debian GNU/Linux distribution.

Packages in the other distribution areas (contrib, non-free) are not considered to be part
of the Debian distribution, although we support their use and provide infrastructure for them
(such as our bug-tracking system and mailing lists). This Debian Policy Manual applies to
these packages as well.

2.1 The Debian Free Software Guidelines

The Debian Free Software Guidelines (DFSG) form our definition of “free software”. These are:

Free Redistribution The license of a Debian component may not restrict any party from sell-
ing or giving away the software as a component of an aggregate software distribution
containing programs from several different sources. The license may not require a roy-
alty or other fee for such sale.

Source Code The program must include source code, and must allow distribution in source
code as well as compiled form.

Chapter 2. The Debian Archive 6

Derived Works The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original software.

Integrity of The Author’s Source Code The license may restrict source-code from being dis-
tributed in modified form only if the license allows the distribution of “patch files” with
the source code for the purpose of modifying the program at build time. The license
must explicitly permit distribution of software built from modified source code. The li-
cense may require derived works to carry a different name or version number from the
original software. (This is a compromise. The Debian Project encourages all authors to
not restrict any files, source or binary, from being modified.)

No Discrimination Against Persons or Groups The license must not discriminate against any
person or group of persons.

No Discrimination Against Fields of Endeavor The license must not restrict anyone from
making use of the program in a specific field of endeavor. For example, it may not restrict
the program from being used in a business, or from being used for genetic research.

Distribution of License The rights attached to the program must apply to all to whom the
program is redistributed without the need for execution of an additional license by those
parties.

License Must Not Be Specific to Debian The rights attached to the program must not depend
on the program’s being part of a Debian system. If the program is extracted from Debian
and used or distributed without Debian but otherwise within the terms of the program’s
license, all parties to whom the program is redistributed must have the same rights as
those that are granted in conjunction with the Debian system.

License Must Not Contaminate Other Software The license must not place restrictions on
other software that is distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the same medium must be
free software.

Example Licenses The “GPL,” “BSD,” and “Artistic” licenses are examples of licenses that we
consider free.

2.2 Categories

2.2.1 The main category

Every package in main must comply with the DFSG (Debian Free Software Guidelines).

In addition, the packages in main
• must not require a package outside of main for compilation or execution (thus, the pack-

age must not declare a “Depends”, “Recommends”, or “Build-Depends” relationship on
a non-main package),

• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual.

Chapter 2. The Debian Archive 7

2.2.2 The contrib category

Every package in contrib must comply with the DFSG.

In addition, the packages in contrib
• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual.

Examples of packages which would be included in contrib are:
• free packages which require contrib, non-free packages or packages which are not in our

archive at all for compilation or execution, and
• wrapper packages or other sorts of free accessories for non-free programs.

2.2.3 The non-free category

Packages must be placed in non-free if they are not compliant with the DFSG or are encumbered
by patents or other legal issues that make their distribution problematic.

In addition, the packages in non-free
• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual that it is possible for them to

meet. 1

2.3 Copyright considerations

Every package must be accompanied by a verbatim copy of its copyright and distribution
license in the file /usr/share/doc/package/copyright (see ‘Copyright information’ on
page 108 for further details).

We reserve the right to restrict files from being included anywhere in our archives if
• their use or distribution would break a law,
• there is an ethical conflict in their distribution or use,
• we would have to sign a license for them, or
• their distribution would conflict with other project policies.

Programs whose authors encourage the user to make donations are fine for the main distribu-
tion, provided that the authors do not claim that not donating is immoral, unethical, illegal or
something similar; in such a case they must go in non-free.

Packages whose copyright permission notices (or patent problems) do not even allow redistri-
bution of binaries only, and where no special permission has been obtained, must not be placed
on the Debian FTP site and its mirrors at all.

Note that under international copyright law (this applies in the United States, too), no distri-
bution or modification of a work is allowed without an explicit notice saying so. Therefore a

1It is possible that there are policy requirements which the package is unable to meet, for example, if the source
is unavailable. These situations will need to be handled on a case-by-case basis.

Chapter 2. The Debian Archive 8

program without a copyright notice is copyrighted and you may not do anything to it without
risking being sued! Likewise if a program has a copyright notice but no statement saying what
is permitted then nothing is permitted.

Many authors are unaware of the problems that restrictive copyrights (or lack of copyright
notices) can cause for the users of their supposedly-free software. It is often worthwhile con-
tacting such authors diplomatically to ask them to modify their license terms. However, this
can be a politically difficult thing to do and you should ask for advice on the debian-legal
mailing list first, as explained below.

When in doubt about a copyright, send mail to <debian-legal@lists.debian.org>. Be
prepared to provide us with the copyright statement. Software covered by the GPL, public
domain software and BSD-like copyrights are safe; be wary of the phrases “commercial use
prohibited” and “distribution restricted”.

2.4 Sections

The packages in the categories main, contrib and non-free are grouped further into sections to
simplify handling.

The category and section for each package should be specified in the package’s Section con-
trol record (see ‘Section’ on page 33). However, the maintainer of the Debian archive may
override this selection to ensure the consistency of the Debian distribution. The Section field
should be of the form:

• section if the package is in the main category,
• segment/section if the package is in the contrib or non-free distribution areas.

The Debian archive maintainers provide the authoritative list of sections. At present, they
are: admin, comm, devel, doc, editors, electronics, embedded, games, gnome, graphics, hamradio, inter-
preters, kde, libs, libdevel, mail, math, misc, net, news, oldlibs, otherosfs, perl, python, science, shells,
sound, tex, text, utils, web, x11.

2.5 Priorities

Each package should have a priority value, which is included in the package’s control record (see
‘Priority’ on page 33). This information is used by the Debian package management tools
to separate high-priority packages from less-important packages.

The following priority levels are recognized by the Debian package management tools.

required Packages which are necessary for the proper functioning of the system (usually,
this means that dpkg functionality depends on these packages). Removing a required
package may cause your system to become totally broken and you may not even be
able to use dpkg to put things back, so only do so if you know what you are doing.
Systems with only the required packages are probably unusable, but they do have
enough functionality to allow the sysadmin to boot and install more software.

Chapter 2. The Debian Archive 9

important Important programs, including those which one would expect to find on any
Unix-like system. If the expectation is that an experienced Unix person who found it
missing would say “What on earth is going on, where is foo?”, it must be an important
package.2 Other packages without which the system will not run well or be usable must
also have priority important. This does not include Emacs, the X Window System, TeX
or any other large applications. The important packages are just a bare minimum of
commonly-expected and necessary tools.

standard These packages provide a reasonably small but not too limited character-mode
system. This is what will be installed by default if the user doesn’t select anything else.
It doesn’t include many large applications.

optional (In a sense everything that isn’t required is optional, but that’s not what is meant
here.) This is all the software that you might reasonably want to install if you didn’t
know what it was and don’t have specialized requirements. This is a much larger system
and includes the X Window System, a full TeX distribution, and many applications. Note
that optional packages should not conflict with each other.

extra This contains all packages that conflict with others with required, important, standard
or optional priorities, or are only likely to be useful if you already know what they are or
have specialized requirements.

Packages must not depend on packages with lower priority values (excluding build-time de-
pendencies). In order to ensure this, the priorities of one or more packages may need to be
adjusted.

2This is an important criterion because we are trying to produce, amongst other things, a free Unix.

Chapter 2. The Debian Archive 10

11

Chapter 3

Binary packages

The Debian GNU/Linux distribution is based on the Debian package management system,
called dpkg. Thus, all packages in the Debian distribution must be provided in the .deb file
format.

3.1 The package name

Every package must have a name that’s unique within the Debian archive.

The package name is included in the control field Package, the format of which is described
in ‘Package’ on page 33. The package name is also included as a part of the file name of the
.deb file.

3.2 The version of a package

Every package has a version number recorded in its Version control file field, described in
‘Version’ on page 35.

The package management system imposes an ordering on version numbers, so that it can tell
whether packages are being up- or downgraded and so that package system front end applica-
tions can tell whether a package it finds available is newer than the one installed on the system.
The version number format has the most significant parts (as far as comparison is concerned)
at the beginning.

If an upstream package has problematic version numbers they should be converted to a sane
form for use in the Version field.

3.2.1 Version numbers based on dates

In general, Debian packages should use the same version numbers as the upstream sources.

Chapter 3. Binary packages 12

However, in some cases where the upstream version number is based on a date (e.g., a de-
velopment “snapshot” release) the package management system cannot handle these version
numbers without epochs. For example, dpkg will consider “96May01” to be greater than
“96Dec24”.

To prevent having to use epochs for every new upstream version, the date based portion of
the version number should be changed to the following format in such cases: “19960501”,
“19961224”. It is up to the maintainer whether they want to bother the upstream maintainer to
change the version numbers upstream, too.

Note that other version formats based on dates which are parsed correctly by the package
management system should not be changed.

Native Debian packages (i.e., packages which have been written especially for Debian) whose
version numbers include dates should always use the “YYYYMMDD” format.

3.3 The maintainer of a package

Every package must have a Debian maintainer (the maintainer may be one person or a group
of people reachable from a common email address, such as a mailing list). The maintainer is
responsible for ensuring that the package is placed in the appropriate distributions.

The maintainer must be specified in the Maintainer control field with their correct name and
a working email address. If one person maintains several packages, they should try to avoid
having different forms of their name and email address in the Maintainer fields of those
packages.

The format of the Maintainer control field is described in ‘Maintainer’ on page 32.

If the maintainer of a package quits from the Debian project, “Debian QA Group” <packages@
qa.debian.org> takes over the maintainer-ship of the package until someone else volun-
teers for that task. These packages are called orphaned packages.1

3.4 The description of a package

Every Debian package must have an extended description stored in the appropriate field of
the control record. The technical information about the format of the Description field is in
‘Description’ on page 37.

The description should describe the package (the program) to a user (system administrator)
who has never met it before so that they have enough information to decide whether they
want to install it. This description should not just be copied verbatim from the program’s
documentation.

1The detailed procedure for doing this gracefully can be found in the Debian Developer’s Reference, see ‘Re-
lated documents’ on page 3.

Chapter 3. Binary packages 13

Put important information first, both in the synopsis and extended description. Sometimes
only the first part of the synopsis or of the description will be displayed. You can assume that
there will usually be a way to see the whole extended description.

The description should also give information about the significant dependencies and conflicts
between this package and others, so that the user knows why these dependencies and conflicts
have been declared.

Instructions for configuring or using the package should not be included (that is what instal-
lation scripts, manual pages, info files, etc., are for). Copyright statements and other admin-
istrivia should not be included either (that is what the copyright file is for).

3.4.1 The single line synopsis

The single line synopsis should be kept brief - certainly under 80 characters.

Do not include the package name in the synopsis line. The display software knows how to
display this already, and you do not need to state it. Remember that in many situations the
user may only see the synopsis line - make it as informative as you can.

3.4.2 The extended description

Do not try to continue the single line synopsis into the extended description. This will not work
correctly when the full description is displayed, and makes no sense where only the summary
(the single line synopsis) is available.

The extended description should describe what the package does and how it relates to the rest
of the system (in terms of, for example, which subsystem it is which part of).

The description field needs to make sense to anyone, even people who have no idea about any
of the things the package deals with.2

3.5 Dependencies

Every package must specify the dependency information about other packages that are re-
quired for the first to work correctly.

For example, a dependency entry must be provided for any shared libraries required by a
dynamically-linked executable binary in a package.

Packages are not required to declare any dependencies they have on other packages which
are marked Essential (see below), and should not do so unless they depend on a particular

2The blurb that comes with a program in its announcements and/or README files is rarely suitable for use in a
description. It is usually aimed at people who are already in the community where the package is used.

Chapter 3. Binary packages 14

version of that package.3

Sometimes, a package requires another package to be installed and configured before it can be
installed. In this case, you must specify a Pre-Depends entry for the package.

You should not specify a Pre-Depends entry for a package before this has been discussed on
the debian-devel mailing list and a consensus about doing that has been reached.

The format of the package interrelationship control fields is described in ‘Declaring relation-
ships between packages’ on page 51.

3.6 Virtual packages

Sometimes, there are several packages which offer more-or-less the same functionality. In this
case, it’s useful to define a virtual package whose name describes that common functionality.
(The virtual packages only exist logically, not physically; that’s why they are called virtual.) The
packages with this particular function will then provide the virtual package. Thus, any other
package requiring that function can simply depend on the virtual package without having to
specify all possible packages individually.

All packages should use virtual package names where appropriate, and arrange to create new
ones if necessary. They should not use virtual package names (except privately, amongst a
cooperating group of packages) unless they have been agreed upon and appear in the list of
virtual package names. (See also ‘Virtual packages - Provides’ on page 55)

The latest version of the authoritative list of virtual package names can be found
in the debian-policy package. It is also available from the Debian web mir-
rors at /doc/packaging-manuals/virtual-package-names-list.txt (http://
www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt).

The procedure for updating the list is described in the preface to the list.

3.7 Base system

The base system is a minimum subset of the Debian GNU/Linux system that is installed
before everything else on a new system. Only very few packages are allowed to form part of
the base system, in order to keep the required disk usage very small.

3Essential is defined as the minimal set of functionality that must be available and usable on the system even
when packages are in an unconfigured (but unpacked) state. This is needed to avoid unresolvable dependency
loops on upgrade. If packages add unnecessary dependencies on packages in this set, the chances that there will
be an unresolvable dependency loop caused by forcing these Essential packages to be configured first before they
need to be is greatly increased. It also increases the chances that frontends will be unable to calculate an upgrade
path, even if one exists. Also, it’s pretty unlikely that functionality from Essential shall ever be removed (which is
one reason why care must be taken before adding to the Essential packages set), but packages have been removed
from the Essential set when the functionality moved to a different package. So depending on these packages just in
case they stop being essential does way more harm than good.

http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt
http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt

Chapter 3. Binary packages 15

The base system consists of all those packages with priority required or important. Many
of them will be tagged essential (see below).

3.8 Essential packages

Some packages are tagged essential for a system using the Essential control file field.
The format of the Essential control field is described in ‘Essential’ on page 34.

Since these packages cannot be easily removed (one has to specify an extra force option to dpkg
to do so), this flag must not be used unless absolutely necessary. A shared library package
must not be tagged essential; dependencies will prevent its premature removal, and we
need to be able to remove it when it has been superseded.

Since dpkg will not prevent upgrading of other packages while an essential package is in an
unconfigured state, all essential packages must supply all of their core functionality even
when unconfigured. If the package cannot satisfy this requirement it must not be tagged as
essential, and any packages depending on this package must instead have explicit dependency
fields as appropriate.

You must not tag any packages essential before this has been discussed on the
debian-devel mailing list and a consensus about doing that has been reached.

3.9 Maintainer Scripts

The package installation scripts should avoid producing output which is unnecessary for the
user to see and should rely on dpkg to stave off boredom on the part of a user installing many
packages. This means, amongst other things, using the --quiet option on install-info.

Errors which occur during the execution of an installation script must be checked and the
installation must not continue after an error.

Note that in general ‘Scripts’ on page 84 applies to package maintainer scripts, too.

You should not use dpkg-divert on a file belonging to another package without consulting
the maintainer of that package first.

All packages which supply an instance of a common command name (or, in general, file-
name) should generally use update-alternatives, so that they may be installed together.
If update-alternatives is not used, then each package must use Conflicts to ensure
that other packages are de-installed. (In this case, it may be appropriate to specify a conflict
against earlier versions of something that previously did not use update-alternatives;
this is an exception to the usual rule that versioned conflicts should be avoided.)

3.9.1 Prompting in maintainer scripts

Package maintainer scripts may prompt the user if necessary. Prompting should be done by
communicating through a program, such as debconf, which conforms to the Debian Config-

Chapter 3. Binary packages 16

uration management specification, version 2 or higher. Prompting the user by other means,
such as by hand4, is now deprecated.

The Debian Configuration management specification is included in the
debconf_specification files in the debian-policy package. It is also available from
the Debian web mirrors at /doc/packaging-manuals/debconf_specification.html
(http://www.debian.org/doc/packaging-manuals/debconf_specification.
html).

Packages which use the Debian Configuration management specification may contain an addi-
tional config script and a templates file in their control archive5. The config script might
be run before the preinst script, and before the package is unpacked or any of its dependen-
cies or pre-dependencies are satisfied. Therefore it must work using only the tools present in
essential packages.6

Packages which use the Debian Configuration management specification must allow for trans-
lation of their messages by using a gettext-based system such as the one provided by the
po-debconf package.

Packages should try to minimize the amount of prompting they need to do, and they should
ensure that the user will only ever be asked each question once. This means that packages
should try to use appropriate shared configuration files (such as /etc/papersize and /etc
/news/server), and shared debconf variables rather than each prompting for their own list
of required pieces of information.

It also means that an upgrade should not ask the same questions again, unless the user has
used dpkg --purge to remove the package’s configuration. The answers to configuration
questions should be stored in an appropriate place in /etc so that the user can modify them,
and how this has been done should be documented.

If a package has a vitally important piece of information to pass to the user (such as “don’t
run me as I am, you must edit the following configuration files first or you risk your system
emitting badly-formatted messages”), it should display this in the config or postinst script
and prompt the user to hit return to acknowledge the message. Copyright messages do not
count as vitally important (they belong in /usr/share/doc/package/copyright); neither
do instructions on how to use a program (these should be in on-line documentation, where all
the users can see them).

Any necessary prompting should almost always be confined to the config or postinst
script. If it is done in the postinst, it should be protected with a conditional so that unnec-
essary prompting doesn’t happen if a package’s installation fails and the postinst is called
with abort-upgrade, abort-remove or abort-deconfigure.

4From the Jargon file: by hand 2. By extension, writing code which does something in an explicit or low-level
way for which a presupplied library (debconf, in this instance) routine ought to have been available.

5The control.tar.gz inside the .deb. See deb(5).
6Debconf or another tool that implements the Debian Configuration management specification will also be

installed, and any versioned dependencies on it will be satisfied before preconfiguration begins.

http://www.debian.org/doc/packaging-manuals/debconf_specification.html
http://www.debian.org/doc/packaging-manuals/debconf_specification.html

17

Chapter 4

Source packages

4.1 Standards conformance

Source packages should specify the most recent version number of this policy document with
which your package complied when it was last updated.

This information may be used to file bug reports automatically if your package becomes too
much out of date.

The version is specified in the Standards-Version control field. The format of the
Standards-Version field is described in ‘Standards-Version’ on page 35.

You should regularly, and especially if your package has become out of date, check for the
newest Policy Manual available and update your package, if necessary. When your package
complies with the new standards you should update the Standards-Version source pack-
age field and release it.1

4.2 Package relationships

Source packages should specify which binary packages they require to be installed or not to
be installed in order to build correctly. For example, if building a package requires a certain
compiler, then the compiler should be specified as a build-time dependency.

It is not necessary to explicitly specify build-time relationships on a minimal set of packages
that are always needed to compile, link and put in a Debian package a standard “Hello World!”
program written in C or C++. The required packages are called build-essential, and an informa-
tional list can be found in /usr/share/doc/build-essential/list (which is contained
in the build-essential package).2

1See the file upgrading-checklist for information about policy which has changed between different ver-
sions of this document.

2Rationale:
• This allows maintaining the list separately from the policy documents (the list does not need the kind of

Chapter 4. Source packages 18

When specifying the set of build-time dependencies, one should list only those packages ex-
plicitly required by the build. It is not necessary to list packages which are required merely
because some other package in the list of build-time dependencies depends on them.3

If build-time dependencies are specified, it must be possible to build the package and pro-
duce working binaries on a system with only essential and build-essential packages installed
and also those required to satisfy the build-time relationships (including any implied relation-
ships). In particular, this means that version clauses should be used rigorously in build-time
relationships so that one cannot produce bad or inconsistently configured packages when the
relationships are properly satisfied.

‘Declaring relationships between packages’ on page 51 explains the technical details.

4.3 Changes to the upstream sources

If changes to the source code are made that are not specific to the needs of the Debian system,
they should be sent to the upstream authors in whatever form they prefer so as to be included
in the upstream version of the package.

If you need to configure the package differently for Debian or for Linux, and the upstream
source doesn’t provide a way to do so, you should add such configuration facilities (for exam-
ple, a new autoconf test or #define) and send the patch to the upstream authors, with the
default set to the way they originally had it. You can then easily override the default in your
debian/rules or wherever is appropriate.

You should make sure that the configure utility detects the correct architecture specification
string (refer to ‘Architecture specification strings’ on page 93 for details).

If you need to edit a Makefilewhere GNU-style configure scripts are used, you should edit
the .in files rather than editing the Makefile directly. This allows the user to reconfigure the
package if necessary. You should not configure the package and edit the generated Makefile!
This makes it impossible for someone else to later reconfigure the package without losing the
changes you made.

control that the policy documents do).
• Having a separate package allows one to install the build-essential packages on a machine, as well as allow-

ing other packages such as tasks to require installation of the build-essential packages using the depends
relation.

• The separate package allows bug reports against the list to be categorized separately from the policy man-
agement process in the BTS.

3The reason for this is that dependencies change, and you should list all those packages, and only those
packages that you need directly. What others need is their business. For example, if you only link against
libimlib, you will need to build-depend on libimlib2-dev but not against any libjpeg* packages, even
though libimlib2-dev currently depends on them: installation of libimlib2-dev will automatically ensure
that all of its run-time dependencies are satisfied.

Chapter 4. Source packages 19

4.4 Debian changelog: debian/changelog

Changes in the Debian version of the package should be briefly explained in the Debian
changelog file debian/changelog.4 This includes modifications made in the Debian pack-
age compared to the upstream one as well as other changes and updates to the package. 5

The format of the debian/changelog allows the package building tools to discover which
version of the package is being built and find out other release-specific information.

That format is a series of entries like this:

package (version) distribution(s); urgency=urgency
[optional blank line(s), stripped]

* change details
more change details
[blank line(s), included in output of dpkg-parsechangelog]

* even more change details
[optional blank line(s), stripped]

-- maintainer name <email address>[two spaces] date

package and version are the source package name and version number.

distribution(s) lists the distributions where this version should be installed when it is uploaded -
it is copied to the Distribution field in the .changes file. See ‘Distribution’ on page 37.

urgency is the value for the Urgency field in the .changes file for the upload (see ‘Urgency’
on page 38). It is not possible to specify an urgency containing commas; commas are used to
separate keyword=value settings in the dpkg changelog format (though there is currently
only one useful keyword, urgency).

The change details may in fact be any series of lines starting with at least two spaces, but
conventionally each change starts with an asterisk and a separating space and continuation
lines are indented so as to bring them in line with the start of the text above. Blank lines may
be used here to separate groups of changes, if desired.

If this upload resolves bugs recorded in the Bug Tracking System (BTS), they may be automat-
ically closed on the inclusion of this package into the Debian archive by including the string:
closes: Bug#nnnnn in the change details.6 This information is conveyed via the Closes
field in the .changes file (see ‘Closes’ on page 40).

4Mistakes in changelogs are usually best rectified by making a new changelog entry rather than “rewriting
history” by editing old changelog entries.

5Although there is nothing stopping an author who is also the Debian maintainer from using this changelog
for all their changes, it will have to be renamed if the Debian and upstream maintainers become different people.
In such a case, however, it might be better to maintain the package as a non-native package.

6To be precise, the string should match the following Perl regular expression:

/closes:\s*(?:bug)?\#?\s?\d+(?:,\s*(?:bug)?\#?\s?\d+)*/i

Then all of the bug numbers listed will be closed by the archive maintenance script (katie) using the version of the
changelog entry.

Chapter 4. Source packages 20

The maintainer name and email address used in the changelog should be the details of the
person uploading this version. They are not necessarily those of the usual package main-
tainer. The information here will be copied to the Changed-By field in the .changes file
(see ‘Changed-By’ on page 33), and then later used to send an acknowledgement when the
upload has been installed.

The date should be in RFC822 format7; it should include the time zone specified numerically,
with the time zone name or abbreviation optionally present as a comment in parentheses.

The first “title” line with the package name should start at the left hand margin; the “trailer”
line with the maintainer and date details should be preceded by exactly one space. The main-
tainer details and the date must be separated by exactly two spaces.

For more information on placement of the changelog files within binary packages, please see
‘Changelog files’ on page 109.

4.4.1 Alternative changelog formats

In non-experimental packages you must use a format for debian/changelog which is sup-
ported by the most recent released version of dpkg.

It is possible to use a format different from the standard one by providing a changelog parser
for the format you wish to use. The parser must have an API compatible with that expected by
dpkg-genchanges and dpkg-gencontrol, and it must not interact with the user at all. 8

4.5 Copyright: debian/copyright

Every package must be accompanied by a verbatim copy of its copyright and distribution li-
cense in the file /usr/share/doc/package/copyright (see ‘Copyright information’ on
page 108 for further details). Also see ‘Copyright considerations’ on page 7 for further consid-
erations relayed to copyrights for packages.

4.6 Error trapping in makefiles

When make invokes a command in a makefile (including your package’s upstream makefiles
and debian/rules), it does so using sh. This means that sh’s usual bad error handling
properties apply: if you include a miniature script as one of the commands in your makefile
you’ll find that if you don’t do anything about it then errors are not detected and make will
blithely continue after problems.

7This is generated by date -R.
8If there is general interest in the new format, you should contact the dpkg maintainer to have the parser script

for it included in the dpkg package. (You will need to agree that the parser and its man page may be distributed
under the GNU GPL, just as the rest of dpkg is.)

Chapter 4. Source packages 21

Every time you put more than one shell command (this includes using a loop) in a makefile
command you must make sure that errors are trapped. For simple compound commands,
such as changing directory and then running a program, using && rather than semicolon as
a command separator is sufficient. For more complex commands including most loops and
conditionals you should include a separate set -e command at the start of every makefile
command that’s actually one of these miniature shell scripts.

4.7 Time Stamps

Maintainers should preserve the modification times of the upstream source files in a package,
as far as is reasonably possible.9

4.8 Restrictions on objects in source packages

The source package may not contain any hard links10, device special files, sockets or setuid or
setgid files.11

4.9 Main building script: debian/rules

This file must be an executable makefile, and contains the package-specific recipes for compil-
ing the package and building binary package(s) from the source.

It must start with the line #!/usr/bin/make -f, so that it can be invoked by saying its name
rather than invoking make explicitly.

Since an interactive debian/rules script makes it impossible to auto-compile that pack-
age and also makes it hard for other people to reproduce the same binary package, all re-
quired targets MUST be non-interactive. At a minimum, required targets are the ones called by
dpkg-buildpackage, namely, clean, binary, binary-arch, binary-indep, and build. It also follows
that any target that these targets depend on must also be non-interactive.

The targets are as follows (required unless stated otherwise):

build The build target should perform all the configuration and compilation of the package.
If a package has an interactive pre-build configuration routine, the Debianized source
package must either be built after this has taken place (so that the binary package can
be built without rerunning the configuration) or the configuration routine modified to

9The rationale is that there is some information conveyed by knowing the age of the file, for example, you
could recognize that some documentation is very old by looking at the modification time, so it would be nice if the
modification time of the upstream source would be preserved.

10This is not currently detected when building source packages, but only when extracting them. Hard links may
be permitted at some point in the future, but would require a fair amount of work.

11Setgid directories are allowed.

Chapter 4. Source packages 22

become non-interactive. (The latter is preferable if there are architecture-specific features
detected by the configuration routine.)

For some packages, notably ones where the same source tree is compiled in different
ways to produce two binary packages, the build target does not make much sense.
For these packages it is good enough to provide two (or more) targets (build-a and
build-b or whatever) for each of the ways of building the package, and a build target
that does nothing. The binary target will have to build the package in each of the
possible ways and make the binary package out of each.

The build target must not do anything that might require root privilege.

The build target may need to run the clean target first - see below.

When a package has a configuration and build routine which takes a long time, or when
the makefiles are poorly designed, or when build needs to run clean first, it is a
good idea to touch build when the build process is complete. This will ensure that
if debian/rules build is run again it will not rebuild the whole program.12

build-arch (optional), build-indep (optional) A package may also provide both of the
targets build-arch and build-indep. The build-arch target, if provided, should
perform all the configuration and compilation required for producing all architecture-
dependant binary packages (those packages for which the body of the Architecture
field in debian/control is not all). Similarly, the build-indep target, if pro-
vided, should perform all the configuration and compilation required for producing all
architecture-independent binary packages (those packages for which the body of the
Architecture field in debian/control is all). The build target should depend
on those of the targets build-arch and build-indep that are provided in the rules
file.

If one or both of the targets build-arch and build-indep are not provided, then
invoking debian/rules with one of the not-provided targets as arguments should pro-
duce a exit status code of 2. Usually this is provided automatically by make if the target
is missing.

The build-arch and build-indep targets must not do anything that might require
root privilege.

binary, binary-arch, binary-indep The binary target must be all that is necessary for
the user to build the binary package(s) produced from this source package. It is split into
two parts: binary-arch builds the binary packages which are specific to a particular
architecture, and binary-indep builds those which are not.

binary may be (and commonly is) a target with no commands which simply depends
on binary-arch and binary-indep.

Both binary-* targets should depend on the build target, or on the appropriate
build-arch or build-indep target, if provided, so that the package is built if it

12Another common way to do this is for build to depend on build-stamp and to do nothing else, and for the
build-stamp target to do the building and to touch build-stamp on completion. This is especially useful if
the build routine creates a file or directory called build; in such a case, build will need to be listed as a phony
target (i.e., as a dependency of the .PHONY target). See the documentation of make for more information on phony
targets.

Chapter 4. Source packages 23

has not been already. It should then create the relevant binary package(s), using
dpkg-gencontrol to make their control files and dpkg-deb to build them and place
them in the parent of the top level directory.

Both the binary-arch and binary-indep targets must exist. If one of them has noth-
ing to do (which will always be the case if the source generates only a single binary
package, whether architecture-dependent or not), it must still exist and must always suc-
ceed.

The binary targets must be invoked as root.13

clean This must undo any effects that the build and binary targets may have had, except
that it should leave alone any output files created in the parent directory by a run of a
binary target.

If a build file is touched at the end of the build target, as suggested above, it should be
removed as the first action that clean performs, so that running build again after an
interrupted clean doesn’t think that everything is already done.

The clean target may need to be invoked as root if binary has been invoked since the
last clean, or if build has been invoked as root (since build may create directories, for
example).

get-orig-source (optional) This target fetches the most recent version of the original
source package from a canonical archive site (via FTP or WWW, for example), does any
necessary rearrangement to turn it into the original source tar file format described below,
and leaves it in the current directory.

This target may be invoked in any directory, and should take care to clean up any tem-
porary files it may have left.

This target is optional, but providing it if possible is a good idea.

patch (optional) This target performs whatever additional actions are required to make the
source ready for editing (unpacking additional upstream archives, applying patches,
etc.). It is recommended to be implemented for any package where dpkg-source -x
does not result in source ready for additional modification. See ‘Source package han-
dling: debian/README.source’ on page 26.

The build, binary and clean targets must be invoked with the current directory being the
package’s top-level directory.

Additional targets may exist in debian/rules, either as published or undocumented inter-
faces or for the package’s internal use.

The architectures we build on and build for are determined by make variables using the utility
dpkg-architecture. You can determine the Debian architecture and the GNU style archi-
tecture specification string for the build machine (the machine type we are building on) as well
as for the host machine (the machine type we are building for). Here is a list of supported make
variables:

13The fakeroot package often allows one to build a package correctly even without being root.

Chapter 4. Source packages 24

• DEB_*_ARCH (the Debian architecture)
• DEB_*_GNU_TYPE (the GNU style architecture specification string)
• DEB_*_GNU_CPU (the CPU part of DEB_*_GNU_TYPE)
• DEB_*_GNU_SYSTEM (the System part of DEB_*_GNU_TYPE)

where * is either BUILD for specification of the build machine or HOST for specification of the
host machine.

Backward compatibility can be provided in the rules file by setting the needed variables to
suitable default values; please refer to the documentation of dpkg-architecture for details.

It is important to understand that the DEB_*_ARCH string only determines which Debian archi-
tecture we are building on or for. It should not be used to get the CPU or system information;
the GNU style variables should be used for that.

4.9.1 debian/rules and DEB_BUILD_OPTIONS

Supporting the standardized environment variable DEB_BUILD_OPTIONS is recommended.
This variable can contain several flags to change how a package is compiled and built. Each
flag must be in the form flag or flag=options. If multiple flags are given, they must be separated
by whitespace.14 flag must start with a lowercase letter (a-z) and consist only of lowercase
letters, numbers (0-9), and the characters - and _ (hyphen and underscore). options must not
contain whitespace. The same tag should not be given multiple times with conflicting values.
Package maintainers may assume that DEB_BUILD_OPTIONS will not contain conflicting tags.

The meaning of the following tags has been standardized:

noopt The presence of this tag means that the package should be compiled with a minimum of
optimization. For C programs, it is best to add -O0 to CFLAGS (although this is usually
the default). Some programs might fail to build or run at this level of optimization; it
may be necessary to use -O1, for example.

nostrip This tag means that the debugging symbols should not be stripped from the binary
during installation, so that debugging information may be included in the package.

parallel=n This tag means that the package should be built using up to n parallel processes if
the package build system supports this.15 If the package build system does not support
parallel builds, this string must be ignored. If the package build system only supports
a lower level of concurrency than n, the package should be built using as many parallel
processes as the package build system supports. It is up to the package maintainer to
decide whether the package build times are long enough and the package build system
is robust enough to make supporting parallel builds worthwhile.

Unknown flags must be ignored by debian/rules.

14Some packages support any delimiter, but whitespace is the easiest to parse inside a makefile and avoids
ambiguity with flag values that contain commas.

15Packages built with make can often implement this by passing the -jn option to make.

Chapter 4. Source packages 25

The following makefile snippet is an example of how one may implement the build options;
you will probably have to massage this example in order to make it work for your package.

CFLAGS = -Wall -g
INSTALL = install
INSTALL_FILE = $(INSTALL) -p -o root -g root -m 644
INSTALL_PROGRAM = $(INSTALL) -p -o root -g root -m 755
INSTALL_SCRIPT = $(INSTALL) -p -o root -g root -m 755
INSTALL_DIR = $(INSTALL) -p -d -o root -g root -m 755

ifneq (,$(filter noopt,$(DEB_BUILD_OPTIONS)))
CFLAGS += -O0

else
CFLAGS += -O2

endif
ifeq (,$(filter nostrip,$(DEB_BUILD_OPTIONS)))

INSTALL_PROGRAM += -s
endif
ifneq (,$(filter parallel=%,$(DEB_BUILD_OPTIONS)))

NUMJOBS = $(patsubst parallel=%,%,$(filter parallel=%,$(DEB_BUILD_OPTIONS)))
MAKEFLAGS += -j$(NUMJOBS)

endif

4.10 Variable substitutions: debian/substvars

When dpkg-gencontrol, dpkg-genchanges and dpkg-source generate control files they
perform variable substitutions on their output just before writing it. Variable substitutions
have the form ${variable}. The optional file debian/substvars contains variable substi-
tutions to be used; variables can also be set directly from debian/rules using the -V option
to the source packaging commands, and certain predefined variables are also available.

The debian/substvars file is usually generated and modified dynamically by debian
/rules targets, in which case it must be removed by the clean target.

See deb-substvars(5) for full details about source variable substitutions, including the for-
mat of debian/substvars.

4.11 Optional upstream source location: debian/watch

This is an optional, recommended control file for the uscan utility which defines how to au-
tomatically scan ftp or http sites for newly available updates of the package. This is used by
http://dehs.alioth.debian.org/ and other Debian QA tools to help with quality con-
trol and maintenance of the distribution as a whole.

http://dehs.alioth.debian.org/

Chapter 4. Source packages 26

4.12 Generated files list: debian/files

This file is not a permanent part of the source tree; it is used while building packages to record
which files are being generated. dpkg-genchanges uses it when it generates a .changes
file.

It should not exist in a shipped source package, and so it (and any backup files or temporary
files such as files.new16) should be removed by the clean target. It may also be wise to
ensure a fresh start by emptying or removing it at the start of the binary target.

When dpkg-gencontrol is run for a binary package, it adds an entry to debian/files for
the .deb file that will be created when dpkg-deb --build is run for that binary package.
So for most packages all that needs to be done with this file is to delete it in the clean target.

If a package upload includes files besides the source package and any binary packages whose
control files were made with dpkg-gencontrol then they should be placed in the parent of
the package’s top-level directory and dpkg-distaddfile should be called to add the file to
the list in debian/files.

4.13 Convenience copies of code

Some software packages include in their distribution convenience copies of code from other
software packages, generally so that users compiling from source don’t have to download
multiple packages. Debian packages should not make use of these convenience copies unless
the included package is explicitly intended to be used in this way.17 If the included code is
already in the Debian archive in the form of a library, the Debian packaging should ensure that
binary packages reference the libraries already in Debian and the convenience copy is not used.
If the included code is not already in Debian, it should be packaged separately as a prerequisite
if possible. 18

4.14 Source package handling: debian/README.source

If running dpkg-source -x on a source package doesn’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating a debian/README.source
documentation file is recommended. This file should explain how to do all of the following:

16files.new is used as a temporary file by dpkg-gencontrol and dpkg-distaddfile - they write a new
version of files here before renaming it, to avoid leaving a corrupted copy if an error occurs.

17For example, parts of the GNU build system work like this.
18Having multiple copies of the same code in Debian is inefficient, often creates either static linking or shared

library conflicts, and, most importantly, increases the difficulty of handling security vulnerabilities in the duplicated
code.

Chapter 4. Source packages 27

1 Generate the fully patched source, in a form ready for editing, that would be built to
create Debian packages. Doing this with a patch target in debian/rules is recom-
mended; see ‘Main building script: debian/rules’ on page 21.

2 Modify the source and save those modifications so that they will be applied when build-
ing the package.

3 Remove source modifications that are currently being applied when building the pack-
age.

4 Optionally, document what steps are necessary to upgrade the Debian source package to
a new upstream version, if applicable.

This explanation should include specific commands and mention any additional required De-
bian packages. It should not assume familiarity with any specific Debian packaging system or
patch management tools.

This explanation may refer to a documentation file installed by one of the package’s build
dependencies provided that the referenced documentation clearly explains these tasks and is
not a general reference manual.

debian/README.source may also include any other information that would be helpful to
someone modifying the source package. Even if the package doesn’t fit the above description,
maintainers are encouraged to document in a debian/README.source file any source pack-
age with a particularly complex or unintuitive source layout or build system (for example, a
package that builds the same source multiple times to generate different binary packages).

Chapter 4. Source packages 28

29

Chapter 5

Control files and their fields

The package management system manipulates data represented in a common format, known
as control data, stored in control files. Control files are used for source packages, binary packages
and the .changes files which control the installation of uploaded files1.

5.1 Syntax of control files

A control file consists of one or more paragraphs of fields2. The paragraphs are separated
by blank lines. Some control files allow only one paragraph; others allow several, in which
case each paragraph usually refers to a different package. (For example, in source packages,
the first paragraph refers to the source package, and later paragraphs refer to binary packages
generated from the source.)

Each paragraph consists of a series of data fields; each field consists of the field name, followed
by a colon and then the data/value associated with that field. It ends at the end of the (logical)
line. Horizontal whitespace (spaces and tabs) may occur immediately before or after the value
and is ignored there; it is conventional to put a single space after the colon. For example, a
field might be:

Package: libc6

the field name is Package and the field value libc6.

Many fields’ values may span several lines; in this case each continuation line must start with
a space or a tab. Any trailing spaces or tabs at the end of individual lines of a field value are
ignored.

In fields where it is specified that lines may not wrap, only a single line of data is allowed and
whitespace is not significant in a field body. Whitespace must not appear inside names (of
packages, architectures, files or anything else) or version numbers, or between the characters
of multi-character version relationships.

1dpkg’s internal databases are in a similar format.
2The paragraphs are also sometimes referred to as stanzas.

Chapter 5. Control files and their fields 30

Field names are not case-sensitive, but it is usual to capitalize the field names using mixed case
as shown below.

Blank lines, or lines consisting only of spaces and tabs, are not allowed within field values or
between fields - that would mean a new paragraph.

5.2 Source package control files – debian/control

The debian/control file contains the most vital (and version-independent) information
about the source package and about the binary packages it creates.

The first paragraph of the control file contains information about the source package in general.
The subsequent sets each describe a binary package that the source tree builds.

The fields in the general paragraph (the first one, for the source package) are:
• Source (mandatory)
• Maintainer (mandatory)
• Uploaders
• Section (recommended)
• Priority (recommended)
• Build-Depends et al
• Standards-Version (recommended)
• Homepage

The fields in the binary package paragraphs are:
• Package (mandatory)
• Architecture (mandatory)
• Section (recommended)
• Priority (recommended)
• Essential
• Depends et al
• Description (mandatory)
• Homepage

The syntax and semantics of the fields are described below.

These fields are used by dpkg-gencontrol to generate control files for binary packages (see
below), by dpkg-genchanges to generate the .changes file to accompany the upload, and
by dpkg-sourcewhen it creates the .dsc source control file as part of a source archive. Many
fields are permitted to span multiple lines in debian/control but not in any other control
file. These tools are responsible for removing the line breaks from such fields when using fields
from debian/control to generate other control files.

The fields here may contain variable references - their values will be substituted by
dpkg-gencontrol, dpkg-genchanges or dpkg-source when they generate output con-
trol files. See ‘Variable substitutions: debian/substvars’ on page 25 for details.

Chapter 5. Control files and their fields 31

5.3 Binary package control files – DEBIAN/control

The DEBIAN/control file contains the most vital (and version-dependent) information about
a binary package.

The fields in this file are:
• Package (mandatory)
• Source
• Version (mandatory)
• Section (recommended)
• Priority (recommended)
• Architecture (mandatory)
• Essential
• Depends et al
• Installed-Size
• Maintainer (mandatory)
• Description (mandatory)
• Homepage

5.4 Debian source control files – .dsc

This file contains a series of fields, identified and separated just like the fields in the control file
of a binary package. The fields are listed below; their syntax is described above, in ‘Control
files and their fields (from old Packaging Manual)’ on page 125.

• Format (mandatory)
• Source (mandatory)
• Version (mandatory)
• Maintainer (mandatory)
• Uploaders
• Binary
• Architecture
• Build-Depends et al
• Standards-Version (recommended)
• Files (mandatory)
• Homepage

The source package control file is generated by dpkg-source when it builds the source
archive, from other files in the source package, described above. When unpacking, it is checked
against the files and directories in the other parts of the source package.

5.5 Debian changes files – .changes

The .changes files are used by the Debian archive maintenance software to pro-
cess updates to packages. They contain one paragraph which contains information

Chapter 5. Control files and their fields 32

from the debian/control file and other data about the source package gathered via
debian/changelog and debian/rules.

The fields in this file are:
• Format (mandatory)
• Date (mandatory)
• Source (mandatory)
• Binary (mandatory)
• Architecture (mandatory)
• Version (mandatory)
• Distribution (mandatory)
• Urgency (recommended)
• Maintainer (mandatory)
• Changed-By
• Description (mandatory)
• Closes
• Changes (mandatory)
• Files (mandatory)

5.6 List of fields

5.6.1 Source

This field identifies the source package name.

In debian/control or a .dsc file, this field must contain only the name of the source pack-
age.

In a binary package control file or a .changes file, the source package name may be fol-
lowed by a version number in parentheses3. This version number may be omitted (and is, by
dpkg-gencontrol) if it has the same value as the Version field of the binary package in
question. The field itself may be omitted from a binary package control file when the source
package has the same name and version as the binary package.

5.6.2 Maintainer

The package maintainer’s name and email address. The name should come first, then the email
address inside angle brackets <> (in RFC822 format).

If the maintainer’s name contains a full stop then the whole field will not work directly as an
email address due to a misfeature in the syntax specified in RFC822; a program using this field
as an address must check for this and correct the problem if necessary (for example by putting
the name in round brackets and moving it to the end, and bringing the email address forward).

3It is customary to leave a space after the package name if a version number is specified.

Chapter 5. Control files and their fields 33

5.6.3 Uploaders

List of the names and email addresses of co-maintainers of the package, if any. If the package
has other maintainers beside the one named in the Maintainer field, their names and email
addresses should be listed here. The format is the same as that of the Maintainer tag, and
multiple entries should be comma separated. Currently, this field is restricted to a single line
of data. This is an optional field.

Any parser that interprets the Uploaders field in debian/control must permit it to span
multiple lines. Line breaks in an Uploaders field that spans multiple lines are not significant
and the semantics of the field are the same as if the line breaks had not been present.

5.6.4 Changed-By

The name and email address of the person who changed the said package. Usually the name
of the maintainer. All the rules for the Maintainer field apply here, too.

5.6.5 Section

This field specifies an application area into which the package has been classified. See ‘Sections’
on page 8.

When it appears in the debian/control file, it gives the value for the subfield of the same
name in the Files field of the .changes file. It also gives the default for the same field in the
binary packages.

5.6.6 Priority

This field represents how important that it is that the user have the package installed. See
‘Priorities’ on page 8.

When it appears in the debian/control file, it gives the value for the subfield of the same
name in the Files field of the .changes file. It also gives the default for the same field in the
binary packages.

5.6.7 Package

The name of the binary package.

Package names must consist only of lower case letters (a-z), digits (0-9), plus (+) and minus
(-) signs, and periods (.). They must be at least two characters long and must start with an
alphanumeric character.

Chapter 5. Control files and their fields 34

5.6.8 Architecture

Depending on context and the control file used, the Architecture field can include the fol-
lowing sets of values:

• A unique single word identifying a Debian machine architecture, see ‘Architecture spec-
ification strings’ on page 93.

• all, which indicates an architecture-independent package.

• any, which indicates a package available for building on any architecture.

• source, which indicates a source package.

In the main debian/control file in the source package, or in the source package control file
.dsc, one may specify a list of architectures separated by spaces, or the special values any or
all.

Specifying any indicates that the source package isn’t dependent on any particular architec-
ture and should compile fine on any one. The produced binary package(s) will be specific to
whatever the current build architecture is.4

Specifying a list of architectures indicates that the source will build an architecture-dependent
package, and will only work correctly on the listed architectures.5

In a .changes file, the Architecture field lists the architecture(s) of the package(s) currently
being uploaded. This will be a list; if the source for the package is also being uploaded, the
special entry source is also present.

See ‘Main building script: debian/rules’ on page 21 for information how to get the archi-
tecture for the build process.

5.6.9 Essential

This is a boolean field which may occur only in the control file of a binary package or in a
per-package fields paragraph of a main source control data file.

If set to yes then the package management system will refuse to remove the package (upgrad-
ing and replacing it is still possible). The other possible value is no, which is the same as not
having the field at all.

5.6.10 Package interrelationship fields: Depends, Pre-Depends, Recommends,
Suggests, Breaks, Conflicts, Provides, Replaces, Enhances

These fields describe the package’s relationships with other packages. Their syntax and se-
mantics are described in ‘Declaring relationships between packages’ on page 51.

4This is the most often used setting, and is recommended for new packages that aren’t Architecture: all.
5This is a setting used for a minority of cases where the program is not portable. Generally, it should not be

used for new packages.

Chapter 5. Control files and their fields 35

5.6.11 Standards-Version

The most recent version of the standards (the policy manual and associated texts) with which
the package complies.

The version number has four components: major and minor version number and major and
minor patch level. When the standards change in a way that requires every package to change
the major number will be changed. Significant changes that will require work in many pack-
ages will be signaled by a change to the minor number. The major patch level will be changed
for any change to the meaning of the standards, however small; the minor patch level will be
changed when only cosmetic, typographical or other edits are made which neither change the
meaning of the document nor affect the contents of packages.

Thus only the first three components of the policy version are significant in the Standards-
Version control field, and so either these three components or the all four components may be
specified.6

5.6.12 Version

The version number of a package. The format is: [epoch:]upstream_version[-debian_revision]

The three components here are:

epoch This is a single (generally small) unsigned integer. It may be omitted, in which case zero
is assumed. If it is omitted then the upstream_version may not contain any colons.

It is provided to allow mistakes in the version numbers of older versions of a package,
and also a package’s previous version numbering schemes, to be left behind.

upstream_version This is the main part of the version number. It is usually the version number
of the original (“upstream”) package from which the .deb file has been made, if this is
applicable. Usually this will be in the same format as that specified by the upstream
author(s); however, it may need to be reformatted to fit into the package management
system’s format and comparison scheme.

The comparison behavior of the package management system with respect to the up-
stream_version is described below. The upstream_version portion of the version number is
mandatory.

The upstream_version may contain only alphanumerics7 and the characters . + - : ~ (full
stop, plus, hyphen, colon, tilde) and should start with a digit. If there is no debian_revision
then hyphens are not allowed; if there is no epoch then colons are not allowed.

6In the past, people specified the full version number in the Standards-Version field, for example “2.3.0.0”.
Since minor patch-level changes don’t introduce new policy, it was thought it would be better to relax policy and
only require the first 3 components to be specified, in this example “2.3.0”. All four components may still be used
if someone wishes to do so.

7Alphanumerics are A-Za-z0-9 only.

Chapter 5. Control files and their fields 36

debian_revision This part of the version number specifies the version of the Debian package
based on the upstream version. It may contain only alphanumerics and the characters +
. ~ (plus, full stop, tilde) and is compared in the same way as the upstream_version is.

It is optional; if it isn’t present then the upstream_version may not contain a hyphen. This
format represents the case where a piece of software was written specifically to be turned
into a Debian package, and so there is only one “debianisation” of it and therefore no
revision indication is required.

It is conventional to restart the debian_revision at 1 each time the upstream_version is in-
creased.

The package management system will break the version number apart at the last hyphen
in the string (if there is one) to determine the upstream_version and debian_revision. The
absence of a debian_revision is equivalent to a debian_revision of 0.

When comparing two version numbers, first the epoch of each are compared, then the up-
stream_version if epoch is equal, and then debian_revision if upstream_version is also equal. epoch
is compared numerically. The upstream_version and debian_revision parts are compared by the
package management system using the following algorithm:

The strings are compared from left to right.

First the initial part of each string consisting entirely of non-digit characters is determined.
These two parts (one of which may be empty) are compared lexically. If a difference is found
it is returned. The lexical comparison is a comparison of ASCII values modified so that all the
letters sort earlier than all the non-letters and so that a tilde sorts before anything, even the end
of a part. For example, the following parts are in sorted order from earliest to latest: ~~, ~~a,
~, the empty part, a.8

Then the initial part of the remainder of each string which consists entirely of digit characters is
determined. The numerical values of these two parts are compared, and any difference found
is returned as the result of the comparison. For these purposes an empty string (which can
only occur at the end of one or both version strings being compared) counts as zero.

These two steps (comparing and removing initial non-digit strings and initial digit strings) are
repeated until a difference is found or both strings are exhausted.

Note that the purpose of epochs is to allow us to leave behind mistakes in version numbering,
and to cope with situations where the version numbering scheme changes. It is not intended
to cope with version numbers containing strings of letters which the package management
system cannot interpret (such as ALPHA or pre-), or with silly orderings (the author of this
manual has heard of a package whose versions went 1.1, 1.2, 1.3, 1, 2.1, 2.2, 2 and so
forth).

8One common use of ~ is for upstream pre-releases. For example, 1.0~beta1~svn1245 sorts earlier than
1.0~beta1, which sorts earlier than 1.0.

Chapter 5. Control files and their fields 37

5.6.13 Description

In a source or binary control file, the Description field contains a description of the binary
package, consisting of two parts, the synopsis or the short description, and the long descrip-
tion. The field’s format is as follows:

Description: <single line synopsis>
<extended description over several lines>

The lines in the extended description can have these formats:

• Those starting with a single space are part of a paragraph. Successive lines of this form
will be word-wrapped when displayed. The leading space will usually be stripped off.

• Those starting with two or more spaces. These will be displayed verbatim. If the display
cannot be panned horizontally, the displaying program will line wrap them “hard” (i.e.,
without taking account of word breaks). If it can they will be allowed to trail off to
the right. None, one or two initial spaces may be deleted, but the number of spaces
deleted from each line will be the same (so that you can have indenting work correctly,
for example).

• Those containing a single space followed by a single full stop character. These are ren-
dered as blank lines. This is the only way to get a blank line9.

• Those containing a space, a full stop and some more characters. These are for future
expansion. Do not use them.

Do not use tab characters. Their effect is not predictable.

See ‘The description of a package’ on page 12 for further information on this.

In a .changes file, the Description field contains a summary of the descriptions for the
packages being uploaded.

The part of the field before the first newline is empty; thereafter each line has the name of
a binary package and the summary description line from that binary package. Each line is
indented by one space.

5.6.14 Distribution

In a .changes file or parsed changelog output this contains the (space-separated) name(s) of
the distribution(s) where this version of the package should be installed. Valid distributions
are determined by the archive maintainers.10

9Completely empty lines will not be rendered as blank lines. Instead, they will cause the parser to think you’re
starting a whole new record in the control file, and will therefore likely abort with an error.

10Current distribution names are:

Chapter 5. Control files and their fields 38

5.6.15 Date

This field includes the date the package was built or last edited.

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog’ on page 19).

5.6.16 Format

This field specifies a format revision for the file. The most current format described in the
Policy Manual is version 1.5. The syntax of the format value is the same as that of a package
version number except that no epoch or Debian revision is allowed - see ‘Version’ on page 35.

5.6.17 Urgency

This is a description of how important it is to upgrade to this version from previous ones. It
consists of a single keyword taking one of the values low, medium, high, emergency, or
critical11 (not case-sensitive) followed by an optional commentary (separated by a space)
which is usually in parentheses. For example:

Urgency: low (HIGH for users of diversions)

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog’ on page 19.

stable This is the current “released” version of Debian GNU/Linux. Once the distribution is stable only security
fixes and other major bug fixes are allowed. When changes are made to this distribution, the release number
is increased (for example: 2.2r1 becomes 2.2r2 then 2.2r3, etc).

unstable This distribution value refers to the developmental part of the Debian distribution tree. New packages,
new upstream versions of packages and bug fixes go into the unstable directory tree. Download from this
distribution at your own risk.

testing This distribution value refers to the testing part of the Debian distribution tree. It receives its packages from
the unstable distribution after a short time lag to ensure that there are no major issues with the unstable
packages. It is less prone to breakage than unstable, but still risky. It is not possible to upload packages
directly to testing.

frozen From time to time, the testing distribution enters a state of “code-freeze” in anticipation of release as a stable
version. During this period of testing only fixes for existing or newly-discovered bugs will be allowed. The
exact details of this stage are determined by the Release Manager.

experimental The packages with this distribution value are deemed by their maintainers to be high risk. Often-
times they represent early beta or developmental packages from various sources that the maintainers want
people to try, but are not ready to be a part of the other parts of the Debian distribution tree. Download at
your own risk.

You should list all distributions that the package should be installed into. More information is available in the
Debian Developer’s Reference, section “The Debian archive”.

11Other urgency values are supported with configuration changes in the archive software but are not used in
Debian. The urgency affects how quickly a package will be considered for inclusion into the testing distribution
and gives an indication of the importance of any fixes included in the upload. Emergency and critical are
treated as synonymous.

Chapter 5. Control files and their fields 39

5.6.18 Changes

This field contains the human-readable changes data, describing the differences between the
last version and the current one.

There should be nothing in this field before the first newline; all the subsequent lines must be
indented by at least one space; blank lines must be represented by a line consisting only of a
space and a full stop.

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog’ on page 19).

Each version’s change information should be preceded by a “title” line giving at least the ver-
sion, distribution(s) and urgency, in a human-readable way.

If data from several versions is being returned the entry for the most recent version should be
returned first, and entries should be separated by the representation of a blank line (the “title”
line may also be followed by the representation of blank line).

5.6.19 Binary

This field is a list of binary packages.

When it appears in the .dsc file it is the list of binary packages which a source package can
produce. It does not necessarily produce all of these binary packages for every architecture.
The source control file doesn’t contain details of which architectures are appropriate for which
of the binary packages.

When it appears in a .changes file it lists the names of the binary packages actually being
uploaded.

The syntax is a list of binary packages separated by commas12. Currently the packages must
be separated using only spaces in the .changes file.

5.6.20 Installed-Size

This field appears in the control files of binary packages, and in the Packages files. It gives
the total amount of disk space required to install the named package.

The disk space is represented in kilobytes as a simple decimal number.

5.6.21 Files

This field contains a list of files with information about each one. The exact information and
syntax varies with the context. In all cases the part of the field contents on the same line as the

12A space after each comma is conventional.

Chapter 5. Control files and their fields 40

field name is empty. The remainder of the field is one line per file, each line being indented by
one space and containing a number of sub-fields separated by spaces.

In the .dsc file, each line contains the MD5 checksum, size and filename of the tar file and (if
applicable) diff file which make up the remainder of the source package13. The exact forms of
the filenames are described in ‘Source packages as archives’ on page 123.

In the .changes file this contains one line per file being uploaded. Each line contains the MD5
checksum, size, section and priority and the filename. The section and priority are the values
of the corresponding fields in the main source control file. If no section or priority is specified
then - should be used, though section and priority values must be specified for new packages
to be installed properly.

The special value byhand for the section in a .changes file indicates that the file in question
is not an ordinary package file and must by installed by hand by the distribution maintainers.
If the section is byhand the priority should be -.

If a new Debian revision of a package is being shipped and no new original source archive
is being distributed the .dsc must still contain the Files field entry for the original source
archive package-upstream-version.orig.tar.gz, but the .changes file should leave
it out. In this case the original source archive on the distribution site must match exactly, byte-
for-byte, the original source archive which was used to generate the .dsc file and diff which
are being uploaded.

5.6.22 Closes

A space-separated list of bug report numbers that the upload governed by the .changes file
closes.

5.6.23 Homepage

The URL of the web site for this package, preferably (when applicable) the site from which the
original source can be obtained and any additional upstream documentation or information
may be found. The content of this field is a simple URL without any surrounding characters
such as <>.

5.7 User-defined fields

Additional user-defined fields may be added to the source package control file. Such fields will
be ignored, and not copied to (for example) binary or source package control files or upload
control files.

If you wish to add additional unsupported fields to these output files you should use the
mechanism described here.

13That is, the parts which are not the .dsc.

Chapter 5. Control files and their fields 41

Fields in the main source control information file with names starting X, followed by one or
more of the letters BCS and a hyphen -, will be copied to the output files. Only the part of the
field name after the hyphen will be used in the output file. Where the letter B is used the field
will appear in binary package control files, where the letter S is used in source package control
files and where C is used in upload control (.changes) files.

For example, if the main source information control file contains the field

XBS-Comment: I stand between the candle and the star.

then the binary and source package control files will contain the field

Comment: I stand between the candle and the star.

Chapter 5. Control files and their fields 42

43

Chapter 6

Package maintainer scripts and
installation procedure

6.1 Introduction to package maintainer scripts

It is possible to supply scripts as part of a package which the package management system will
run for you when your package is installed, upgraded or removed.

These scripts are the files preinst, postinst, prerm and postrm in the control area of the
package. They must be proper executable files; if they are scripts (which is recommended),
they must start with the usual #! convention. They should be readable and executable by
anyone, and must not be world-writable.

The package management system looks at the exit status from these scripts. It is important that
they exit with a non-zero status if there is an error, so that the package management system
can stop its processing. For shell scripts this means that you almost always need to use set -e
(this is usually true when writing shell scripts, in fact). It is also important, of course, that they
don’t exit with a non-zero status if everything went well.

Additionally, packages interacting with users using debconf in the postinst script should
install a config script in the control area, see ‘Prompting in maintainer scripts’ on page 15 for
details.

When a package is upgraded a combination of the scripts from the old and new packages is
called during the upgrade procedure. If your scripts are going to be at all complicated you
need to be aware of this, and may need to check the arguments to your scripts.

Broadly speaking the preinst is called before (a particular version of) a package is installed,
and the postinst afterwards; the prerm before (a version of) a package is removed and the
postrm afterwards.

Programs called from maintainer scripts should not normally have a path prepended to them.
Before installation is started, the package management system checks to see if the programs
ldconfig, start-stop-daemon, install-info, and update-rc.d can be found via the
PATH environment variable. Those programs, and any other program that one would expect

Chapter 6. Package maintainer scripts and installation procedure 44

to be in the PATH, should thus be invoked without an absolute pathname. Maintainer scripts
should also not reset the PATH, though they might choose to modify it by prepending or ap-
pending package-specific directories. These considerations really apply to all shell scripts.

6.2 Maintainer scripts idempotency

It is necessary for the error recovery procedures that the scripts be idempotent. This means
that if it is run successfully, and then it is called again, it doesn’t bomb out or cause any harm,
but just ensures that everything is the way it ought to be. If the first call failed, or aborted
half way through for some reason, the second call should merely do the things that were left
undone the first time, if any, and exit with a success status if everything is OK.1

6.3 Controlling terminal for maintainer scripts

The maintainer scripts are guaranteed to run with a controlling terminal and can interact with
the user. Because these scripts may be executed with standard output redirected into a pipe for
logging purposes, Perl scripts should set unbuffered output by setting $|=1 so that the output
is printed immediately rather than being buffered.

6.4 Exit status

Each script must return a zero exit status for success, or a nonzero one for failure, since the
package management system looks for the exit status of these scripts and determines what
action to take next based on that datum.

6.5 Summary of ways maintainer scripts are called

• new-preinst install
• new-preinst install old-version
• new-preinst upgrade old-version
• old-preinst abort-upgrade new-version
• postinst configure most-recently-configured-version
• old-postinst abort-upgrade new-version
• conflictor’s-postinst abort-remove in-favour package new-version
• postinst abort-remove
• deconfigured’s-postinst abort-deconfigure in-favour failed-install-package version

[removing conflicting-package version]
• prerm remove

1This is so that if an error occurs, the user interrupts dpkg or some other unforeseen circumstance happens you
don’t leave the user with a badly-broken package when dpkg attempts to repeat the action.

Chapter 6. Package maintainer scripts and installation procedure 45

• old-prerm upgrade new-version
• new-prerm failed-upgrade old-version
• conflictor’s-prerm remove in-favour package new-version
• deconfigured’s-prerm deconfigure in-favour package-being-installed version

[removing conflicting-package version]
• postrm remove
• postrm purge
• old-postrm upgrade new-version
• new-postrm failed-upgrade old-version
• new-postrm abort-install
• new-postrm abort-install old-version
• new-postrm abort-upgrade old-version
• disappearer’s-postrm disappear overwriter overwriter-version

6.6 Details of unpack phase of installation or upgrade

The procedure on installation/upgrade/overwrite/disappear (i.e., when running dpkg
--unpack, or the unpack stage of dpkg --install) is as follows. In each case, if a ma-
jor error occurs (unless listed below) the actions are, in general, run backwards - this means
that the maintainer scripts are run with different arguments in reverse order. These are the
“error unwind” calls listed below.

1 1 If a version of the package is already installed, call

old-prerm upgrade new-version

2 If the script runs but exits with a non-zero exit status, dpkg will attempt:

new-prerm failed-upgrade old-version

If this works, the upgrade continues. If this does not work, the error unwind:

old-postinst abort-upgrade new-version

If this works, then the old-version is “Installed”, if not, the old version is in a “Failed-
Config” state.

2 If a “conflicting” package is being removed at the same time, or if any package will be
broken (due to Breaks):

1 If --auto-deconfigure is specified, call, for each package to be deconfigured
due to Breaks:

deconfigured’s-prerm deconfigure \
in-favour package-being-installed version

Error unwind:

deconfigured’s-postinst abort-deconfigure \
in-favour package-being-installed-but-failed version

Chapter 6. Package maintainer scripts and installation procedure 46

The deconfigured packages are marked as requiring configuration, so that if
--install is used they will be configured again if possible.

2 If any packages depended on a conflicting package being removed and
--auto-deconfigure is specified, call, for each such package:

deconfigured’s-prerm deconfigure \
in-favour package-being-installed version \

removing conflicting-package version

Error unwind:

deconfigured’s-postinst abort-deconfigure \
in-favour package-being-installed-but-failed version \

removing conflicting-package version

The deconfigured packages are marked as requiring configuration, so that if
--install is used they will be configured again if possible.

3 To prepare for removal of each conflicting package, call:

conflictor’s-prerm remove \
in-favour package new-version

Error unwind:

conflictor’s-postinst abort-remove \
in-favour package new-version

3 1 If the package is being upgraded, call:

new-preinst upgrade old-version

If this fails, we call:

new-postrm abort-upgrade old-version

1 If that works, then
old-postinst abort-upgrade new-version

is called. If this works, then the old version is in an “Installed” state, or else it is
left in an “Unpacked” state.

2 If it fails, then the old version is left in an “Half-Installed” state.

2 Otherwise, if the package had some configuration files from a previous version in-
stalled (i.e., it is in the “configuration files only” state):

new-preinst install old-version

Error unwind:

new-postrm abort-install old-version

If this fails, the package is left in a “Half-Installed” state, which requires a reinstall.
If it works, the packages is left in a “Config Files” state.

Chapter 6. Package maintainer scripts and installation procedure 47

3 Otherwise (i.e., the package was completely purged):

new-preinst install

Error unwind:

new-postrm abort-install

If the error-unwind fails, the package is in a “Half Installed” phase, and requires a
reinstall. If the error unwind works, the package is in a not installed state.

4 The new package’s files are unpacked, overwriting any that may be on the system al-
ready, for example any from the old version of the same package or from another pack-
age. Backups of the old files are kept temporarily, and if anything goes wrong the pack-
age management system will attempt to put them back as part of the error unwind.

It is an error for a package to contain files which are on the system in another package,
unless Replaces is used (see ‘Overwriting files and replacing packages - Replaces’ on
page 56).

It is a more serious error for a package to contain a plain file or other kind of non-directory
where another package has a directory (again, unless Replaces is used). This error can
be overridden if desired using --force-overwrite-dir, but this is not advisable.

Packages which overwrite each other’s files produce behavior which, though determin-
istic, is hard for the system administrator to understand. It can easily lead to “missing”
programs if, for example, a package is installed which overwrites a file from another
package, and is then removed again.2

A directory will never be replaced by a symbolic link to a directory or vice versa; instead,
the existing state (symlink or not) will be left alone and dpkg will follow the symlink if
there is one.

5 1 If the package is being upgraded, call

old-postrm upgrade new-version

2 If this fails, dpkg will attempt:

new-postrm failed-upgrade old-version

If this works, installation continues. If not, Error unwind:

old-preinst abort-upgrade new-version

If this fails, the old version is left in an “Half Installed” state. If it works, dpkg now
calls:

new-postrm abort-upgrade old-version

If this fails, the old version is left in an “Half Installed” state. If it works, dpkg now
calls:

old-postinst abort-upgrade new-version

2Part of the problem is due to what is arguably a bug in dpkg.

Chapter 6. Package maintainer scripts and installation procedure 48

If this fails, the old version is in an “Unpacked” state.

This is the point of no return - if dpkg gets this far, it won’t back off past this point
if an error occurs. This will leave the package in a fairly bad state, which will require
a successful re-installation to clear up, but it’s when dpkg starts doing things that are
irreversible.

6 Any files which were in the old version of the package but not in the new are removed.

7 The new file list replaces the old.

8 The new maintainer scripts replace the old.

9 Any packages all of whose files have been overwritten during the installation, and which
aren’t required for dependencies, are considered to have been removed. For each such
package

1 dpkg calls:

disappearer’s-postrm disappear \
overwriter overwriter-version

2 The package’s maintainer scripts are removed.

3 It is noted in the status database as being in a sane state, namely not installed (any
conffiles it may have are ignored, rather than being removed by dpkg). Note that
disappearing packages do not have their prerm called, because dpkg doesn’t know
in advance that the package is going to vanish.

10 Any files in the package we’re unpacking that are also listed in the file lists of other pack-
ages are removed from those lists. (This will lobotomize the file list of the “conflicting”
package if there is one.)

11 The backup files made during installation, above, are deleted.

12 The new package’s status is now sane, and recorded as “unpacked”.

Here is another point of no return - if the conflicting package’s removal fails we do not
unwind the rest of the installation; the conflicting package is left in a half-removed limbo.

13 If there was a conflicting package we go and do the removal actions (described below),
starting with the removal of the conflicting package’s files (any that are also in the pack-
age being installed have already been removed from the conflicting package’s file list,
and so do not get removed now).

6.7 Details of configuration

When we configure a package (this happens with dpkg --install and dpkg
--configure), we first update any conffiles and then call:

Chapter 6. Package maintainer scripts and installation procedure 49

postinst configure most-recently-configured-version

No attempt is made to unwind after errors during configuration. If the configuration fails, the
package is in a “Failed Config” state, and an error message is generated.

If there is no most recently configured version dpkg will pass a null argument. 3

6.8 Details of removal and/or configuration purging

1 prerm remove

If prerm fails during replacement due to conflict

conflictor’s-postinst abort-remove \
in-favour package new-version

Or else we call:

postinst abort-remove

If this fails, the package is in a “Failed-Config” state, or else it remains “Installed”.

2 The package’s files are removed (except conffiles).

3 postrm remove

If it fails, there’s no error unwind, and the package is in an “Half-Installed” state.

4 All the maintainer scripts except the postrm are removed.

If we aren’t purging the package we stop here. Note that packages which have no
postrm and no conffiles are automatically purged when removed, as there is no dif-
ference except for the dpkg status.

5 The conffiles and any backup files (~-files, #*# files, %-files,
.dpkg-{old,new,tmp}, etc.) are removed.

6 postrm purge

If this fails, the package remains in a “Config-Files” state.

7 The package’s file list is removed.

3Historical note: Truly ancient (pre-1997) versions of dpkg passed <unknown> (including the angle brackets) in
this case. Even older ones did not pass a second argument at all, under any circumstance. Note that upgrades using
such an old dpkg version are unlikely to work for other reasons, even if this old argument behavior is handled by
your postinst script.

Chapter 6. Package maintainer scripts and installation procedure 50

51

Chapter 7

Declaring relationships between
packages

7.1 Syntax of relationship fields

These fields all have a uniform syntax. They are a list of package names separated by commas.

In the Depends, Recommends, Suggests, Pre-Depends, Build-Depends and
Build-Depends-Indep control file fields of the package, which declare dependencies
on other packages, the package names listed may also include lists of alternative package
names, separated by vertical bar (pipe) symbols |. In such a case, if any one of the alternative
packages is installed, that part of the dependency is considered to be satisfied.

All of the fields except for Provides may restrict their applicability to particular versions of
each named package. This is done in parentheses after each individual package name; the
parentheses should contain a relation from the list below followed by a version number, in the
format described in ‘Version’ on page 35.

The relations allowed are <<, <=, =, >= and >> for strictly earlier, earlier or equal, exactly
equal, later or equal and strictly later, respectively. The deprecated forms < and > were used to
mean earlier/later or equal, rather than strictly earlier/later, so they should not appear in new
packages (though dpkg still supports them).

Whitespace may appear at any point in the version specification subject to the rules in ‘Syntax
of control files’ on page 29, and must appear where it’s necessary to disambiguate; it is not
otherwise significant. All of the relationship fields may span multiple lines. For consistency
and in case of future changes to dpkg it is recommended that a single space be used after a
version relationship and before a version number; it is also conventional to put a single space
after each comma, on either side of each vertical bar, and before each open parenthesis. When
wrapping a relationship field, it is conventional to do so after a comma and before the space
following that comma.

For example, a list of dependencies might appear as:

Package: mutt

Chapter 7. Declaring relationships between packages 52

Version: 1.3.17-1
Depends: libc6 (>= 2.2.1), exim | mail-transport-agent

All fields that specify build-time relationships (Build-Depends, Build-Depends-Indep,
Build-Conflicts and Build-Conflicts-Indep) may be restricted to a certain set of ar-
chitectures. This is indicated in brackets after each individual package name and the optional
version specification. The brackets enclose a list of Debian architecture names separated by
whitespace. Exclamation marks may be prepended to each of the names. (It is not permitted
for some names to be prepended with exclamation marks while others aren’t.) If the current
Debian host architecture is not in this list and there are no exclamation marks in the list, or it is
in the list with a prepended exclamation mark, the package name and the associated version
specification are ignored completely for the purposes of defining the relationships.

For example:

Source: glibc
Build-Depends-Indep: texinfo
Build-Depends: kernel-headers-2.2.10 [!hurd-i386],

hurd-dev [hurd-i386], gnumach-dev [hurd-i386]

Note that the binary package relationship fields such as Depends appear in one of the
binary package sections of the control file, whereas the build-time relationships such as
Build-Depends appear in the source package section of the control file (which is the first
section).

7.2 Binary Dependencies - Depends, Recommends, Suggests,
Enhances, Pre-Depends

Packages can declare in their control file that they have certain relationships to other packages
- for example, that they may not be installed at the same time as certain other packages, and/or
that they depend on the presence of others.

This is done using the Depends, Pre-Depends, Recommends, Suggests, Enhances,
Breaks and Conflicts control file fields.

These seven fields are used to declare a dependency relationship by one package on another.
Except for Enhances and Breaks, they appear in the depending (binary) package’s control
file. (Enhances appears in the recommending package’s control file, and Breaks appears in
the version of depended-on package which causes the named package to break).

A Depends field takes effect only when a package is to be configured. It does not prevent a
package being on the system in an unconfigured state while its dependencies are unsatisfied,
and it is possible to replace a package whose dependencies are satisfied and which is properly
installed with a different version whose dependencies are not and cannot be satisfied; when
this is done the depending package will be left unconfigured (since attempts to configure it
will give errors) and will not function properly. If it is necessary, a Pre-Depends field can be

Chapter 7. Declaring relationships between packages 53

used, which has a partial effect even when a package is being unpacked, as explained in detail
below. (The other three dependency fields, Recommends, Suggests and Enhances, are only
used by the various front-ends to dpkg such as apt-get, aptitude, and dselect.)

For this reason packages in an installation run are usually all unpacked first and all config-
ured later; this gives later versions of packages with dependencies on later versions of other
packages the opportunity to have their dependencies satisfied.

In case of circular dependencies, since installation or removal order honoring the dependency
order can’t be established, dependency loops are broken at some point (based on rules below),
and some packages may not be able to rely on their dependencies being present when being in-
stalled or removed, depending on which side of the break of the circular dependency loop they
happen to be on. If one of the packages in the loop has no postinst script, then the cycle will
be broken at that package, so as to ensure that all postinst scripts run with the dependencies
properly configured if this is possible. Otherwise the breaking point is arbitrary.

The Depends field thus allows package maintainers to impose an order in which packages
should be configured.

The meaning of the five dependency fields is as follows:

Depends This declares an absolute dependency. A package will not be configured unless all
of the packages listed in its Depends field have been correctly configured.

The Depends field should be used if the depended-on package is required for the de-
pending package to provide a significant amount of functionality.

The Depends field should also be used if the postinst, prerm or postrm scripts re-
quire the package to be present in order to run. Note, however, that the postrm cannot
rely on any non-essential packages to be present during the purge phase.

Recommends This declares a strong, but not absolute, dependency.

The Recommends field should list packages that would be found together with this one
in all but unusual installations.

Suggests This is used to declare that one package may be more useful with one or more
others. Using this field tells the packaging system and the user that the listed packages
are related to this one and can perhaps enhance its usefulness, but that installing this one
without them is perfectly reasonable.

Enhances This field is similar to Suggests but works in the opposite direction. It is used to
declare that a package can enhance the functionality of another package.

Pre-Depends This field is like Depends, except that it also forces dpkg to complete instal-
lation of the packages named before even starting the installation of the package which
declares the pre-dependency, as follows:

When a package declaring a pre-dependency is about to be unpacked the pre-dependency
can be satisfied if the depended-on package is either fully configured, or even if the
depended-on package(s) are only unpacked or half-configured, provided that they have

Chapter 7. Declaring relationships between packages 54

been configured correctly at some point in the past (and not removed or partially re-
moved since). In this case, both the previously-configured and currently unpacked or
half-configured versions must satisfy any version clause in the Pre-Depends field.

When the package declaring a pre-dependency is about to be configured, the pre-
dependency will be treated as a normal Depends, that is, it will be considered satisfied
only if the depended-on package has been correctly configured.

Pre-Depends should be used sparingly, preferably only by packages whose premature
upgrade or installation would hamper the ability of the system to continue with any
upgrade that might be in progress.

Pre-Depends are also required if the preinst script depends on the named package.
It is best to avoid this situation if possible.

When selecting which level of dependency to use you should consider how important the
depended-on package is to the functionality of the one declaring the dependency. Some pack-
ages are composed of components of varying degrees of importance. Such a package should
list using Depends the package(s) which are required by the more important components. The
other components’ requirements may be mentioned as Suggestions or Recommendations, as
appropriate to the components’ relative importance.

7.3 Packages which break other packages - Breaks

Using Breaks may cause problems for upgrades from older versions of Debian and should
not be used until the stable release of Debian supports Breaks.

When one binary package declares that it breaks another, dpkgwill refuse to allow the package
which declares Breaks be installed unless the broken package is deconfigured first, and it will
refuse to allow the broken package to be reconfigured.

A package will not be regarded as causing breakage merely because its configuration files are
still installed; it must be at least half-installed.

A special exception is made for packages which declare that they break their own package
name or a virtual package which they provide (see below): this does not count as a real break-
age.

Normally a Breaks entry will have an “earlier than” version clause; such a Breaks is intro-
duced in the version of an (implicit or explicit) dependency which violates an assumption or
reveals a bug in earlier versions of the broken package. This use of Breaks will inform higher-
level package management tools that broken package must be upgraded before the new one.

If the breaking package also overwrites some files from the older package, it should use
Replaces (not Conflicts) to ensure this goes smoothly.

Chapter 7. Declaring relationships between packages 55

7.4 Conflicting binary packages - Conflicts

When one binary package declares a conflict with another using a Conflicts field, dpkg will
refuse to allow them to be installed on the system at the same time.

If one package is to be installed, the other must be removed first - if the package being installed
is marked as replacing (see ‘Overwriting files and replacing packages - Replaces’ on the
next page) the one on the system, or the one on the system is marked as deselected, or both
packages are marked Essential, then dpkg will automatically remove the package which
is causing the conflict, otherwise it will halt the installation of the new package with an error.
This mechanism is specifically designed to produce an error when the installed package is
Essential, but the new package is not.

A package will not cause a conflict merely because its configuration files are still installed; it
must be at least half-installed.

A special exception is made for packages which declare a conflict with their own package
name, or with a virtual package which they provide (see below): this does not prevent their
installation, and allows a package to conflict with others providing a replacement for it. You
use this feature when you want the package in question to be the only package providing some
feature.

A Conflicts entry should almost never have an “earlier than” version clause. This would
prevent dpkg from upgrading or installing the package which declared such a conflict until
the upgrade or removal of the conflicted-with package had been completed. Instead, Breaks
may be used (once Breaks is supported by the stable release of Debian).

7.5 Virtual packages - Provides

As well as the names of actual (“concrete”) packages, the package relationship
fields Depends, Recommends, Suggests, Enhances, Pre-Depends, Breaks,
Conflicts, Build-Depends, Build-Depends-Indep, Build-Conflicts and
Build-Conflicts-Indep may mention “virtual packages”.

A virtual package is one which appears in the Provides control file field of another package.
The effect is as if the package(s) which provide a particular virtual package name had been
listed by name everywhere the virtual package name appears. (See also ‘Virtual packages’ on
page 14)

If there are both concrete and virtual packages of the same name, then the dependency may
be satisfied (or the conflict caused) by either the concrete package with the name in question
or any other concrete package which provides the virtual package with the name in question.
This is so that, for example, supposing we have

Package: foo
Depends: bar

and someone else releases an enhanced version of the bar package they can say:

Chapter 7. Declaring relationships between packages 56

Package: bar-plus
Provides: bar

and the bar-plus package will now also satisfy the dependency for the foo package.

If a relationship field has a version number attached then only real packages will be considered
to see whether the relationship is satisfied (or the prohibition violated, for a conflict or break-
age) - it is assumed that a real package which provides the virtual package is not of the “right”
version. So, a Provides field may not contain version numbers, and the version number of
the concrete package which provides a particular virtual package will not be looked at when
considering a dependency on or conflict with the virtual package name.

It is likely that the ability will be added in a future release of dpkg to specify a version number
for each virtual package it provides. This feature is not yet present, however, and is expected
to be used only infrequently.

If you want to specify which of a set of real packages should be the default to satisfy a particular
dependency on a virtual package, you should list the real package as an alternative before the
virtual one.

7.6 Overwriting files and replacing packages - Replaces

Packages can declare in their control file that they should overwrite files in certain other pack-
ages, or completely replace other packages. The Replaces control file field has these two
distinct purposes.

7.6.1 Overwriting files in other packages

Firstly, as mentioned before, it is usually an error for a package to contain files which are on
the system in another package.

However, if the overwriting package declares that it Replaces the one containing the file
being overwritten, then dpkg will replace the file from the old package with that from the new.
The file will no longer be listed as “owned” by the old package.

If a package is completely replaced in this way, so that dpkg does not know of any files it
still contains, it is considered to have “disappeared”. It will be marked as not wanted on the
system (selected for removal) and not installed. Any conffiles details noted for the package
will be ignored, as they will have been taken over by the overwriting package. The package’s
postrm script will be run with a special argument to allow the package to do any final cleanup
required. See ‘Summary of ways maintainer scripts are called’ on page 44. 1

For this usage of Replaces, virtual packages (see ‘Virtual packages - Provides’ on the pre-
ceding page) are not considered when looking at a Replaces field - the packages declared as
being replaced must be mentioned by their real names.

1Replaces is a one way relationship – you have to install the replacing package after the replaced package.

Chapter 7. Declaring relationships between packages 57

Furthermore, this usage of Replaces only takes effect when both packages are at least par-
tially on the system at once, so that it can only happen if they do not conflict or if the conflict
has been overridden.

7.6.2 Replacing whole packages, forcing their removal

Secondly, Replaces allows the packaging system to resolve which package should be re-
moved when there is a conflict - see ‘Conflicting binary packages - Conflicts’ on page 55.
This usage only takes effect when the two packages do conflict, so that the two usages of this
field do not interfere with each other.

In this situation, the package declared as being replaced can be a virtual package, so for exam-
ple, all mail transport agents (MTAs) would have the following fields in their control files:

Provides: mail-transport-agent
Conflicts: mail-transport-agent
Replaces: mail-transport-agent

ensuring that only one MTA can be installed at any one time.

7.7 Relationships between source and binary pack-
ages - Build-Depends, Build-Depends-Indep,
Build-Conflicts, Build-Conflicts-Indep

Source packages that require certain binary packages to be installed or absent at the time of
building the package can declare relationships to those binary packages.

This is done using the Build-Depends, Build-Depends-Indep, Build-Conflicts and
Build-Conflicts-Indep control file fields.

Build-dependencies on “build-essential” binary packages can be omitted. Please see ‘Package
relationships’ on page 17 for more information.

The dependencies and conflicts they define must be satisfied (as defined earlier for binary
packages) in order to invoke the targets in debian/rules, as follows:2

Build-Depends, Build-Conflicts The Build-Depends and Build-Conflicts fields
must be satisfied when any of the following targets is invoked: build, clean, binary,
binary-arch, build-arch, build-indep and binary-indep.

2If you make “build-arch” or “binary-arch”, you need Build-Depends. If you make “build-indep” or “binary-
indep”, you need Build-Depends and Build-Depends-Indep. If you make “build” or “binary”, you need both. There
is no Build-Depends-Arch; this role is essentially met with Build-Depends. Anyone building the build-indep
and binary-indep targets is basically assumed to be building the whole package anyway and so installs all build
dependencies. The autobuilders use dpkg-buildpackage -B, which calls build (not build-arch, since it
does not yet know how to check for its existence) and binary-arch. The purpose of the original split, I recall,
was so that the autobuilders wouldn’t need to install extra packages needed only for the binary-indep targets. But
without a build-arch/build-indep split, this didn’t work, since most of the work is done in the build target, not in
the binary target.

Chapter 7. Declaring relationships between packages 58

Build-Depends-Indep, Build-Conflicts-Indep The Build-Depends-Indep and
Build-Conflicts-Indep fields must be satisfied when any of the following targets
is invoked: build, build-indep, binary and binary-indep.

59

Chapter 8

Shared libraries

Packages containing shared libraries must be constructed with a little care to make sure that
the shared library is always available. This is especially important for packages whose shared
libraries are vitally important, such as the C library (currently libc6).

Packages involving shared libraries should be split up into several binary packages. This sec-
tion mostly deals with how this separation is to be accomplished; rules for files within the
shared library packages are in ‘Libraries’ on page 82 instead.

8.1 Run-time shared libraries

The run-time shared library needs to be placed in a package whose name changes when-
ever the shared object version changes.1 The most common mechanism is to place it in
a package called librarynamesoversion, where soversion is the version number in
the soname of the shared library2. Alternatively, if it would be confusing to directly ap-
pend soversion to libraryname (e.g. because libraryname itself ends in a number), you may use
libraryname-soversion and libraryname-soversion-dev instead.

If you have several shared libraries built from the same source tree you may lump them all
together into a single shared library package, provided that you change all of their sonames
at once (so that you don’t get filename clashes if you try to install different versions of the
combined shared libraries package).

The package should install the shared libraries under their normal names. For example, the
libgdbm3 package should install libgdbm.so.3.0.0 as /usr/lib/libgdbm.so.3.0.0.
The files should not be renamed or re-linked by any prerm or postrm scripts; dpkg will take

1Since it is common place to install several versions of a package that just provides shared libraries, it is a good
idea that the library package should not contain any extraneous non-versioned files, unless they happen to be in
versioned directories.

2The soname is the shared object name: it’s the thing that has to match exactly between building an executable
and running it for the dynamic linker to be able run the program. For example, if the soname of the library is
libfoo.so.6, the library package would be called libfoo6.

Chapter 8. Shared libraries 60

care of renaming things safely without affecting running programs, and attempts to interfere
with this are likely to lead to problems.

Shared libraries should not be installed executable, since the dynamic linker does not require
this and trying to execute a shared library usually results in a core dump.

The run-time library package should include the symbolic link that ldconfig would create
for the shared libraries. For example, the libgdbm3 package should include a symbolic link
from /usr/lib/libgdbm.so.3 to libgdbm.so.3.0.0. This is needed so that the dynamic
linker (for example ld.so or ld-linux.so.*) can find the library between the time that
dpkg installs it and the time that ldconfig is run in the postinst script.3

8.1.1 ldconfig

Any package installing shared libraries in one of the default library directories of the dy-
namic linker (which are currently /usr/lib and /lib) or a directory that is listed in /etc
/ld.so.conf4 must use ldconfig to update the shared library system.

The package maintainer scripts must only call ldconfig under these circumstances:
• When the postinst script is run with a first argument of configure, the script must

call ldconfig, and may optionally invoke ldconfig at other times.
• When the postrm script is run with a first argument of remove, the script should call
ldconfig.

5

3The package management system requires the library to be placed before the symbolic link pointing to it in
the .deb file. This is so that when dpkg comes to install the symlink (overwriting the previous symlink pointing at
an older version of the library), the new shared library is already in place. In the past, this was achieved by creating
the library in the temporary packaging directory before creating the symlink. Unfortunately, this was not always
effective, since the building of the tar file in the .deb depended on the behavior of the underlying file system. Some
file systems (such as reiserfs) reorder the files so that the order of creation is forgotten. Since version 1.7.0, dpkg
reorders the files itself as necessary when building a package. Thus it is no longer important to concern oneself
with the order of file creation.

4These are currently
• /usr/local/lib
• /usr/lib/libc5-compat
• /lib/libc5-compat

5During install or upgrade, the preinst is called before the new files are installed, so calling “ldconfig” is point-
less. The preinst of an existing package can also be called if an upgrade fails. However, this happens during the
critical time when a shared libs may exist on-disk under a temporary name. Thus, it is dangerous and forbidden by
current policy to call “ldconfig” at this time. When a package is installed or upgraded, “postinst configure” runs
after the new files are safely on-disk. Since it is perfectly safe to invoke ldconfig unconditionally in a postinst, it
is OK for a package to simply put ldconfig in its postinst without checking the argument. The postinst can also
be called to recover from a failed upgrade. This happens before any new files are unpacked, so there is no reason
to call “ldconfig” at this point. For a package that is being removed, prerm is called with all the files intact, so
calling ldconfig is useless. The other calls to “prerm” happen in the case of upgrade at a time when all the files
of the old package are on-disk, so again calling “ldconfig” is pointless. postrm, on the other hand, is called with
the “remove” argument just after the files are removed, so this is the proper time to call “ldconfig” to notify the
system of the fact that the shared libraries from the package are removed. The postrm can be called at several other
times. At the time of “postrm purge”, “postrm abort-install”, or “postrm abort-upgrade”, calling “ldconfig” is use-

Chapter 8. Shared libraries 61

8.2 Shared library support files

If your package contains files whose names do not change with each change in the library
shared object version, you must not put them in the shared library package. Otherwise, several
versions of the shared library cannot be installed at the same time without filename clashes,
making upgrades and transitions unnecessarily difficult.

It is recommended that supporting files and run-time support programs that do not need to be
invoked manually by users, but are nevertheless required for the package to function, be placed
(if they are binary) in a subdirectory of /usr/lib, preferably under /usr/lib/package-name.
If the program or file is architecture independent, the recommendation is for it to be placed in
a subdirectory of /usr/share instead, preferably under /usr/share/package-name. Follow-
ing the package-name naming convention ensures that the file names change when the shared
object version changes.

Run-time support programs that use the shared library but are not required for the library to
function or files used by the shared library that can be used by any version of the shared library
package should instead be put in a separate package. This package might typically be named
libraryname-tools; note the absence of the soversion in the package name.

Files and support programs only useful when compiling software against the library should
be included in the development package for the library.6

8.3 Static libraries

The static library (libraryname.a) is usually provided in addition to the shared version. It
is placed into the development package (see below).

In some cases, it is acceptable for a library to be available in static form only; these cases in-
clude:

• libraries for languages whose shared library support is immature or unstable

• libraries whose interfaces are in flux or under development (commonly the case when
the library’s major version number is zero, or where the ABI breaks across patchlevels)

• libraries which are explicitly intended to be available only in static form by their up-
stream author(s)

8.4 Development files

The development files associated to a shared library need to be placed in a package called
librarynamesoversion-dev, or if you prefer only to support one development version at

less because the shared lib files are not on-disk. However, when “postrm” is invoked with arguments “upgrade”,
“failed-upgrade”, or “disappear”, a shared lib may exist on-disk under a temporary filename.

6For example, a package-name-config script or pkg-config configuration files.

Chapter 8. Shared libraries 62

a time, libraryname-dev.

In case several development versions of a library exist, you may need to use dpkg’s Conflicts
mechanism (see ‘Conflicting binary packages - Conflicts’ on page 55) to ensure that the user
only installs one development version at a time (as different development versions are likely to
have the same header files in them, which would cause a filename clash if both were installed).

The development package should contain a symlink for the associated shared library without
a version number. For example, the libgdbm-dev package should include a symlink from
/usr/lib/libgdbm.so to libgdbm.so.3.0.0. This symlink is needed by the linker (ld)
when compiling packages, as it will only look for libgdbm.so when compiling dynamically.

8.5 Dependencies between the packages of the same library

Typically the development version should have an exact version dependency on the
runtime library, to make sure that compilation and linking happens correctly. The
${binary:Version} substitution variable can be useful for this purpose. 7

8.6 Dependencies between the library and other packages - the
shlibs system

If a package contains a binary or library which links to a shared library, we must ensure that
when the package is installed on the system, all of the libraries needed are also installed. This
requirement led to the creation of the shlibs system, which is very simple in its design: any
package which provides a shared library also provides information on the package dependen-
cies required to ensure the presence of this library, and any package which uses a shared library
uses this information to determine the dependencies it requires. The files which contain the
mapping from shared libraries to the necessary dependency information are called shlibs
files.

Thus, when a package is built which contains any shared libraries, it must provide a shlibs
file for other packages to use, and when a package is built which contains any shared libraries
or compiled binaries, it must run dpkg-shlibdeps on these to determine the libraries used
and hence the dependencies needed by this package.8

7Previously, ${Source-Version} was used, but its name was confusing and it has been deprecated since
dpkg 1.13.19.

8In the past, the shared libraries linked to were determined by calling ldd, but now objdump is used to do this.
The only change this makes to package building is that dpkg-shlibdeps must also be run on shared libraries,
whereas in the past this was unnecessary. The rest of this footnote explains the advantage that this method gives.
We say that a binary foo directly uses a library libbar if it is explicitly linked with that library (that is, it uses
the flag -lbar during the linking stage). Other libraries that are needed by libbar are linked indirectly to foo,
and the dynamic linker will load them automatically when it loads libbar. A package should depend on the
libraries it directly uses, and the dependencies for those libraries should automatically pull in the other libraries.
Unfortunately, the ldd program shows both the directly and indirectly used libraries, meaning that the depen-
dencies determined included both direct and indirect dependencies. The use of objdump avoids this problem by

Chapter 8. Shared libraries 63

In the following sections, we will first describe where the various shlibs files are to be found,
then how to use dpkg-shlibdeps, and finally the shlibs file format and how to create them
if your package contains a shared library.

8.6.1 The shlibs files present on the system

There are several places where shlibs files are found. The following list gives them in the
order in which they are read by dpkg-shlibdeps. (The first one which gives the required
information is used.)

• debian/shlibs.local

This lists overrides for this package. Its use is described below (see ‘Writing the debian
/shlibs.local file’ on page 66).

• /etc/dpkg/shlibs.override

This lists global overrides. This list is normally empty. It is maintained by the local
system administrator.

• DEBIAN/shlibs files in the “build directory”

When packages are being built, any debian/shlibs files are copied into the control
file area of the temporary build directory and given the name shlibs. These files give
details of any shared libraries included in the package.9

• /var/lib/dpkg/info/*.shlibs

These are the shlibs files corresponding to all of the packages installed on the system,
and are maintained by the relevant package maintainers.

• /etc/dpkg/shlibs.default

This file lists any shared libraries whose packages have failed to provide correct shlibs
files. It was used when the shlibs setup was first introduced, but it is now normally
empty. It is maintained by the dpkg maintainer.

determining only the directly used libraries. A good example of where this helps is the following. We could up-
date libimlib with a new version that supports a new graphics format called dgf (but retaining the same major
version number). If we used the old ldd method, every package that uses libimlib would need to be recompiled
so it would also depend on libdgf or it wouldn’t run due to missing symbols. However with the new system,
packages using libimlib can rely on libimlib itself having the dependency on libdgf and so they would not
need rebuilding.

9An example may help here. Let us say that the source package foo generates two binary packages, libfoo2
and foo-runtime. When building the binary packages, the two packages are created in the directories debian
/libfoo2 and debian/foo-runtime respectively. (debian/tmp could be used instead of one of these.) Since
libfoo2 provides the libfoo shared library, it will require a shlibs file, which will be installed in debian
/libfoo2/DEBIAN/shlibs, eventually to become /var/lib/dpkg/info/libfoo2.shlibs. Then when
dpkg-shlibdeps is run on the executable debian/foo-runtime/usr/bin/foo-prog, it will examine the
debian/libfoo2/DEBIAN/shlibs file to determine whether foo-prog’s library dependencies are satisfied by
any of the libraries provided by libfoo2. For this reason, dpkg-shlibdeps must only be run once all of the
individual binary packages’ shlibs files have been installed into the build directory.

Chapter 8. Shared libraries 64

8.6.2 How to use dpkg-shlibdeps and the shlibs files

Put a call to dpkg-shlibdeps into your debian/rules file. If your package contains only
compiled binaries and libraries (but no scripts), you can use a command such as:

dpkg-shlibdeps debian/tmp/usr/bin/* debian/tmp/usr/sbin/* \
debian/tmp/usr/lib/*

Otherwise, you will need to explicitly list the compiled binaries and libraries.10

This command puts the dependency information into the debian/substvars file, which is
then used by dpkg-gencontrol. You will need to place a ${shlibs:Depends} variable in
the Depends field in the control file for this to work.

If dpkg-shlibdeps doesn’t complain, you’re done. If it does complain you might need to
create your own debian/shlibs.local file, as explained below (see ‘Writing the debian
/shlibs.local file’ on page 66).

If you have multiple binary packages, you will need to call dpkg-shlibdeps on each one
which contains compiled libraries or binaries. In such a case, you will need to use the -T
option to the dpkg utilities to specify a different substvars file.

If you are creating a udeb for use in the Debian Installer, you will need to specify that
dpkg-shlibdeps should use the dependency line of type udeb by adding -tudeb as op-
tion11. If there is no dependency line of type udeb in the shlibs file, dpkg-shlibdeps will
fall back to the regular dependency line.

For more details on dpkg-shlibdeps, please see ‘dpkg-shlibdeps - calculates shared library
dependencies’ on page 119 and dpkg-shlibdeps(1).

8.6.3 The shlibs File Format

Each shlibs file has the same format. Lines beginning with # are considered to be comments
and are ignored. Each line is of the form:

[type:]library-name soname-version dependencies ...

We will explain this by reference to the example of the zlib1g package, which (at the time of
writing) installs the shared library /usr/lib/libz.so.1.1.3.

type is an optional element that indicates the type of package for which the line is valid. The
only type currently in use is udeb. The colon and space after the type are required.

library-name is the name of the shared library, in this case libz. (This must match the name
part of the soname, see below.)

10If you are using debhelper, the dh_shlibdeps program will do this work for you. It will also correctly
handle multi-binary packages.

11dh_shlibdeps from the debhelper suite will automatically add this option if it knows it is processing a
udeb.

Chapter 8. Shared libraries 65

soname-version is the version part of the soname of the library. The soname is the thing that
must exactly match for the library to be recognized by the dynamic linker, and is usually of the
form name.so.major-version, in our example, libz.so.1.12 The version part is the part
which comes after .so., so in our case, it is 1.

dependencies has the same syntax as a dependency field in a binary package control file. It
should give details of which packages are required to satisfy a binary built against the version
of the library contained in the package. See ‘Syntax of relationship fields’ on page 51 for details.

In our example, if the first version of the zlib1g package which contained a minor number of
at least 1.3 was 1:1.1.3-1, then the shlibs entry for this library could say:

libz 1 zlib1g (>= 1:1.1.3)

The version-specific dependency is to avoid warnings from the dynamic linker about using
older shared libraries with newer binaries.

As zlib1g also provides a udeb containing the shared library, there would also be a second line:

udeb: libz 1 zlib1g-udeb (>= 1:1.1.3)

8.6.4 Providing a shlibs file

If your package provides a shared library, you need to create a shlibs file following the format
described above. It is usual to call this file debian/shlibs (but if you have multiple binary
packages, you might want to call it debian/shlibs.package instead). Then let debian
/rules install it in the control area:

install -m644 debian/shlibs debian/tmp/DEBIAN

or, in the case of a multi-binary package:

install -m644 debian/shlibs.package debian/package/DEBIAN/shlibs

An alternative way of doing this is to create the shlibs file in the control area directly from
debian/rules without using a debian/shlibs file at all,13 since the debian/shlibs file
itself is ignored by dpkg-shlibdeps.

As dpkg-shlibdeps reads the DEBIAN/shlibs files in all of the binary packages being
built from this source package, all of the DEBIAN/shlibs files should be installed before
dpkg-shlibdeps is called on any of the binary packages.

12This can be determined using the command

objdump -p /usr/lib/libz.so.1.1.3 | grep SONAME

13This is what dh_makeshlibs in the debhelper suite does. If your package also has a udeb that provides a
shared library, dh_makeshlibs can automatically generate the udeb: lines if you specify the name of the udeb
with the --add-udeb option.

Chapter 8. Shared libraries 66

8.6.5 Writing the debian/shlibs.local file

This file is intended only as a temporary fix if your binaries or libraries depend on a library
whose package does not yet provide a correct shlibs file.

We will assume that you are trying to package a binary foo. When you try running
dpkg-shlibdeps you get the following error message (-O displays the dependency informa-
tion on stdout instead of writing it to debian/substvars, and the lines have been wrapped
for ease of reading):

$ dpkg-shlibdeps -O debian/tmp/usr/bin/foo
dpkg-shlibdeps: warning: unable to find dependency

information for shared library libbar (soname 1,
path /usr/lib/libbar.so.1, dependency field Depends)

shlibs:Depends=libc6 (>= 2.2.2-2)

You can then run ldd on the binary to find the full location of the library concerned:

$ ldd foo
libbar.so.1 => /usr/lib/libbar.so.1 (0x4001e000)
libc.so.6 => /lib/libc.so.6 (0x40032000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

So the foo binary depends on the libbar shared library, but no package seems to provide
a *.shlibs file handling libbar.so.1 in /var/lib/dpkg/info/. Let’s determine the
package responsible:

$ dpkg -S /usr/lib/libbar.so.1
bar1: /usr/lib/libbar.so.1
$ dpkg -s bar1 | grep Version
Version: 1.0-1

This tells us that the bar1 package, version 1.0-1, is the one we are using. Now we can file a
bug against the bar1 package and create our own debian/shlibs.local to locally fix the
problem. Including the following line into your debian/shlibs.local file:

libbar 1 bar1 (>= 1.0-1)

should allow the package build to work.

As soon as the maintainer of bar1 provides a correct shlibs file, you should remove this line
from your debian/shlibs.local file. (You should probably also then have a versioned
Build-Depends on bar1 to help ensure that others do not have the same problem building
your package.)

67

Chapter 9

The Operating System

9.1 File system hierarchy

9.1.1 File system Structure

The location of all installed files and directories must comply with the File system Hierar-
chy Standard (FHS), version 2.3, with the exceptions noted below, and except where doing so
would violate other terms of Debian Policy. The following exceptions to the FHS apply:

1 Legacy XFree86 servers are permitted to retain the configuration file location /etc/X11
/XF86Config-4.

2 The optional rules related to user specific configuration files for applications are stored in
the user’s home directory are relaxed. It is recommended that such files start with the ’.’
character (a “dot file”), and if an application needs to create more than one dot file then
the preferred placement is in a subdirectory with a name starting with a ’.’ character, (a
“dot directory”). In this case it is recommended the configuration files not start with the
’.’ character.

3 The requirement for amd64 to use /lib64 for 64 bit binaries is removed.

4 The requirement that /usr/local/share/man be “synonymous” with /usr/local
/man is relaxed to a recommendation

5 The requirement that windowmanagers with a single configuration file call it
system.*wmrc is removed, as is the restriction that the window manager subdirectory
be named identically to the window manager name itself.

6 The requirement that boot manager configuration files live in /etc, or at least are sym-
linked there, is relaxed to a recommendation.

The version of this document referred here can be found in the debian-policy package
or on FHS (Debian copy) (http://www.debian.org/doc/packaging-manuals/fhs/)

http://www.debian.org/doc/packaging-manuals/fhs/

Chapter 9. The Operating System 68

alongside this manual (or, if you have the debian-policy installed, you can try FHS (local
copy) (file:///usr/share/doc/debian-policy/fhs/)). The latest version, which may
be a more recent version, may be found on FHS (upstream) (http://www.pathname.com/
fhs/). Specific questions about following the standard may be asked on the debian-devel
mailing list, or referred to the FHS mailing list (see the FHS web site (http://www.
pathname.com/fhs/) for more information).

9.1.2 Site-specific programs

As mandated by the FHS, packages must not place any files in /usr/local, either by putting
them in the file system archive to be unpacked by dpkg or by manipulating them in their
maintainer scripts.

However, the package may create empty directories below /usr/local so that the system ad-
ministrator knows where to place site-specific files. These are not directories in /usr/local,
but are children of directories in /usr/local. These directories (/usr/local/*/dir/)
should be removed on package removal if they are empty.

Note, that this applies only to directories below /usr/local, not in /usr/local. Packages
must not create sub-directories in the directory /usr/local itself, except those listed in FHS,
section 4.5. However, you may create directories below them as you wish. You must not
remove any of the directories listed in 4.5, even if you created them.

Since /usr/local can be mounted read-only from a remote server, these directories must be
created and removed by the postinst and prerm maintainer scripts and not be included in
the .deb archive. These scripts must not fail if either of these operations fail.

For example, the emacsen-common package could contain something like

if [! -e /usr/local/share/emacs]
then

if mkdir /usr/local/share/emacs 2>/dev/null
then

chown root:staff /usr/local/share/emacs
chmod 2775 /usr/local/share/emacs

fi
fi

in its postinst script, and

rmdir /usr/local/share/emacs/site-lisp 2>/dev/null || true
rmdir /usr/local/share/emacs 2>/dev/null || true

in the prerm script. (Note that this form is used to ensure that if the script is interrupted, the
directory /usr/local/share/emacs will still be removed.)

If you do create a directory in /usr/local for local additions to a package, you should ensure
that settings in /usr/local take precedence over the equivalents in /usr.

file:///usr/share/doc/debian-policy/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Chapter 9. The Operating System 69

However, because /usr/local and its contents are for exclusive use of the local administra-
tor, a package must not rely on the presence or absence of files or directories in /usr/local
for normal operation.

The /usr/local directory itself and all the subdirectories created by the package should
(by default) have permissions 2775 (group-writable and set-group-id) and be owned by
root.staff.

9.1.3 The system-wide mail directory

The system-wide mail directory is /var/mail. This directory is part of the base system and
should not owned by any particular mail agents. The use of the old location /var/spool
/mail is deprecated, even though the spool may still be physically located there. To maintain
partial upgrade compatibility for systems which have /var/spool/mail as their physical
mail spool, packages using /var/mail must depend on either libc6 (>= 2.1.3-13), or on
base-files (>= 2.2.0), or on later versions of either one of these packages.

9.2 Users and groups

9.2.1 Introduction

The Debian system can be configured to use either plain or shadow passwords.

Some user ids (UIDs) and group ids (GIDs) are reserved globally for use by certain packages.
Because some packages need to include files which are owned by these users or groups, or
need the ids compiled into binaries, these ids must be used on any Debian system only for the
purpose for which they are allocated. This is a serious restriction, and we should avoid getting
in the way of local administration policies. In particular, many sites allocate users and/or local
system groups starting at 100.

Apart from this we should have dynamically allocated ids, which should by default be ar-
ranged in some sensible order, but the behavior should be configurable.

Packages other than base-passwd must not modify /etc/passwd, /etc/shadow, /etc
/group or /etc/gshadow.

9.2.2 UID and GID classes

The UID and GID numbers are divided into classes as follows:

0-99: Globally allocated by the Debian project, the same on every Debian system. These ids
will appear in the passwd and group files of all Debian systems, new ids in this range
being added automatically as the base-passwd package is updated.

Packages which need a single statically allocated uid or gid should use one of these; their
maintainers should ask the base-passwd maintainer for ids.

Chapter 9. The Operating System 70

100-999: Dynamically allocated system users and groups. Packages which need a user or
group, but can have this user or group allocated dynamically and differently on each
system, should use adduser --system to create the group and/or user. adduser will
check for the existence of the user or group, and if necessary choose an unused id based
on the ranges specified in adduser.conf.

1000-29999: Dynamically allocated user accounts. By default adduser will choose UIDs and
GIDs for user accounts in this range, though adduser.conf may be used to modify this
behavior.

30000-59999: Reserved.

60000-64999: Globally allocated by the Debian project, but only created on demand. The ids
are allocated centrally and statically, but the actual accounts are only created on users’
systems on demand.

These ids are for packages which are obscure or which require many statically-allocated
ids. These packages should check for and create the accounts in /etc/passwd or /etc
/group (using adduser if it has this facility) if necessary. Packages which are likely to
require further allocations should have a “hole” left after them in the allocation, to give
them room to grow.

65000-65533: Reserved.

65534: User nobody. The corresponding gid refers to the group nogroup.

65535: (uid_t)(-1) == (gid_t)(-1) must not be used, because it is the error return sen-
tinel value.

9.3 System run levels and init.d scripts

9.3.1 Introduction

The /etc/init.d directory contains the scripts executed by init at boot time and when the
init state (or “runlevel”) is changed (see init(8)).

There are at least two different, yet functionally equivalent, ways of handling these scripts. For
the sake of simplicity, this document describes only the symbolic link method. However, it
must not be assumed by maintainer scripts that this method is being used, and any automated
manipulation of the various runlevel behaviors by maintainer scripts must be performed using
update-rc.d as described below and not by manually installing or removing symlinks. For
information on the implementation details of the other method, implemented in the file-rc
package, please refer to the documentation of that package.

These scripts are referenced by symbolic links in the /etc/rcn.d directories. When changing
runlevels, init looks in the directory /etc/rcn.d for the scripts it should execute, where n
is the runlevel that is being changed to, or S for the boot-up scripts.

Chapter 9. The Operating System 71

The names of the links all have the form Smmscript or Kmmscript where mm is a two-digit
number and script is the name of the script (this should be the same as the name of the actual
script in /etc/init.d).

When init changes runlevel first the targets of the links whose names start with a K are ex-
ecuted, each with the single argument stop, followed by the scripts prefixed with an S, each
with the single argument start. (The links are those in the /etc/rcn.d directory corre-
sponding to the new runlevel.) The K links are responsible for killing services and the S link
for starting services upon entering the runlevel.

For example, if we are changing from runlevel 2 to runlevel 3, init will first execute all of the K
prefixed scripts it finds in /etc/rc3.d, and then all of the S prefixed scripts in that directory.
The links starting with K will cause the referred-to file to be executed with an argument of
stop, and the S links with an argument of start.

The two-digit number mm is used to determine the order in which to run the scripts: low-
numbered links have their scripts run first. For example, the K20 scripts will be executed
before the K30 scripts. This is used when a certain service must be started before another. For
example, the name server bind might need to be started before the news server inn so that
inn can set up its access lists. In this case, the script that starts bind would have a lower
number than the script that starts inn so that it runs first:

/etc/rc2.d/S17bind
/etc/rc2.d/S70inn

The two runlevels 0 (halt) and 6 (reboot) are slightly different. In these runlevels, the links
with an S prefix are still called after those with a K prefix, but they too are called with the
single argument stop.

Also, if the script name ends in .sh, the script will be sourced in runlevel S rather than being
run in a forked subprocess, but will be explicitly run by sh in all other runlevels.

9.3.2 Writing the scripts

Packages that include daemons for system services should place scripts in /etc/init.d to
start or stop services at boot time or during a change of runlevel. These scripts should be
named /etc/init.d/package, and they should accept one argument, saying what to do:

start start the service,

stop stop the service,

restart stop and restart the service if it’s already running, otherwise start the service

reload cause the configuration of the service to be reloaded without actually stopping and
restarting the service,

force-reload cause the configuration to be reloaded if the service supports this, otherwise
restart the service.

Chapter 9. The Operating System 72

The start, stop, restart, and force-reload options should be supported by all scripts
in /etc/init.d, the reload option is optional.

The init.d scripts must ensure that they will behave sensibly if invoked with start
when the service is already running, or with stop when it isn’t, and that they don’t
kill unfortunately-named user processes. The best way to achieve this is usually to use
start-stop-daemon.

If a service reloads its configuration automatically (as in the case of cron, for example), the
reload option of the init.d script should behave as if the configuration has been reloaded
successfully.

The /etc/init.d scripts must be treated as configuration files, either (if they are present in
the package, that is, in the .deb file) by marking them as conffiles, or, (if they do not exist
in the .deb) by managing them correctly in the maintainer scripts (see ‘Configuration files’ on
page 86). This is important since we want to give the local system administrator the chance to
adapt the scripts to the local system, e.g., to disable a service without de-installing the package,
or to specify some special command line options when starting a service, while making sure
their changes aren’t lost during the next package upgrade.

These scripts should not fail obscurely when the configuration files remain but the package has
been removed, as configuration files remain on the system after the package has been removed.
Only when dpkg is executed with the --purge option will configuration files be removed. In
particular, as the /etc/init.d/package script itself is usually a conffile, it will remain
on the system if the package is removed but not purged. Therefore, you should include a test
statement at the top of the script, like this:

test -f program-executed-later-in-script || exit 0

Often there are some variables in the init.d scripts whose values control the behavior of the
scripts, and which a system administrator is likely to want to change. As the scripts them-
selves are frequently conffiles, modifying them requires that the administrator merge in
their changes each time the package is upgraded and the conffile changes. To ease the bur-
den on the system administrator, such configurable values should not be placed directly in the
script. Instead, they should be placed in a file in /etc/default, which typically will have the
same base name as the init.d script. This extra file should be sourced by the script when the
script runs. It must contain only variable settings and comments in SUSv3 sh format. It may
either be a conffile or a configuration file maintained by the package maintainer scripts. See
‘Configuration files’ on page 86 for more details.

To ensure that vital configurable values are always available, the init.d script should set
default values for each of the shell variables it uses, either before sourcing the /etc/default/
file or afterwards using something like the : ${VAR:=default} syntax. Also, the init.d
script must behave sensibly and not fail if the /etc/default file is deleted.

9.3.3 Interfacing with the initscript system

Maintainers should use the abstraction layer provided by the update-rc.d and
invoke-rc.d programs to deal with initscripts in their packages’ scripts such as postinst,

Chapter 9. The Operating System 73

prerm and postrm.

Directly managing the /etc/rc?.d links and directly invoking the /etc/init.d/ initscripts
should be done only by packages providing the initscript subsystem (such as sysv-rc and
file-rc).

Managing the links

The program update-rc.d is provided for package maintainers to arrange for the proper
creation and removal of /etc/rcn.d symbolic links, or their functional equivalent if another
method is being used. This may be used by maintainers in their packages’ postinst and
postrm scripts.

You must not include any /etc/rcn.d symbolic links in the actual archive or manually create
or remove the symbolic links in maintainer scripts; you must use the update-rc.d program
instead. (The former will fail if an alternative method of maintaining runlevel information
is being used.) You must not include the /etc/rcn.d directories themselves in the archive
either. (Only the sysvinit package may do so.)

By default update-rc.dwill start services in each of the multi-user state runlevels (2, 3, 4, and
5) and stop them in the halt runlevel (0), the single-user runlevel (1) and the reboot runlevel (6).
The system administrator will have the opportunity to customize runlevels by simply adding,
moving, or removing the symbolic links in /etc/rcn.d if symbolic links are being used, or
by modifying /etc/runlevel.conf if the file-rc method is being used.

To get the default behavior for your package, put in your postinst script

update-rc.d package defaults

and in your postrm

if ["$1" = purge]; then
update-rc.d package remove
fi

. Note that if your package changes runlevels or priority, you may have to remove and
recreate the links, since otherwise the old links may persist. Refer to the documentation of
update-rc.d.

This will use a default sequence number of 20. If it does not matter when or in which order the
init.d script is run, use this default. If it does, then you should talk to the maintainer of the
sysvinit package or post to debian-devel, and they will help you choose a number.

For more information about using update-rc.d, please consult its man page
update-rc.d(8).

Running initscripts

The program invoke-rc.d is provided to make it easier for package maintainers to properly
invoke an initscript, obeying runlevel and other locally-defined constraints that might limit a

Chapter 9. The Operating System 74

package’s right to start, stop and otherwise manage services. This program may be used by
maintainers in their packages’ scripts.

The package maintainer scripts must use invoke-rc.d to invoke the /etc/init.d/*
initscripts, instead of calling them directly.

By default, invoke-rc.d will pass any action requests (start, stop, reload, restart. . .) to the
/etc/init.d script, filtering out requests to start or restart a service out of its intended run-
levels.

Most packages will simply need to change:

/etc/init.d/<package>
<action>

in their postinst and prerm scripts to:

if which invoke-rc.d >/dev/null 2>&1; then
invoke-rc.d package <action>
else
/etc/init.d/package <action>
fi

A package should register its initscript services using update-rc.d before it tries to invoke
them using invoke-rc.d. Invocation of unregistered services may fail.

For more information about using invoke-rc.d, please consult its man page
invoke-rc.d(8).

9.3.4 Boot-time initialization

There used to be another directory, /etc/rc.boot, which contained scripts which were run
once per machine boot. This has been deprecated in favour of links from /etc/rcS.d to files
in /etc/init.d as described in ‘Introduction’ on page 70. Packages must not place files in
/etc/rc.boot.

9.3.5 Example

An example on which you can base your /etc/init.d scripts is found in /etc/init.d
/skeleton.

9.4 Console messages from init.d scripts

This section describes the formats to be used for messages written to standard output by the
/etc/init.d scripts. The intent is to improve the consistency of Debian’s startup and shut-
down look and feel. For this reason, please look very carefully at the details. We want the
messages to have the same format in terms of wording, spaces, punctuation and case of letters.

Chapter 9. The Operating System 75

Here is a list of overall rules that should be used for messages generated by /etc/init.d
scripts.

• The message should fit in one line (fewer than 80 characters), start with a capital letter
and end with a period (.) and line feed (“\n”).

• If the script is performing some time consuming task in the background (not merely
starting or stopping a program, for instance), an ellipsis (three dots: ...) should be
output to the screen, with no leading or tailing whitespace or line feeds.

• The messages should appear as if the computer is telling the user what it is doing (politely
:-), but should not mention “it” directly. For example, instead of:

I’m starting network daemons: nfsd mountd.

the message should say

Starting network daemons: nfsd mountd.

init.d script should use the following standard message formats for the situations enumer-
ated below.

• When daemons are started

If the script starts one or more daemons, the output should look like this (a single line,
no leading spaces):

Starting description: daemon-1 ... daemon-n.

The description should describe the subsystem the daemon or set of daemons are part of,
while daemon-1 up to daemon-n denote each daemon’s name (typically the file name of
the program).

For example, the output of /etc/init.d/lpd would look like:

Starting printer spooler: lpd.

This can be achieved by saying

echo -n "Starting printer spooler: lpd"
start-stop-daemon --start --quiet --exec /usr/sbin/lpd
echo "."

in the script. If there are more than one daemon to start, the output should look like this:

echo -n "Starting remote file system services:"
echo -n " nfsd"; start-stop-daemon --start --quiet nfsd
echo -n " mountd"; start-stop-daemon --start --quiet mountd
echo -n " ugidd"; start-stop-daemon --start --quiet ugidd
echo "."

Chapter 9. The Operating System 76

This makes it possible for the user to see what is happening and when the final daemon
has been started. Care should be taken in the placement of white spaces: in the example
above the system administrators can easily comment out a line if they don’t want to start
a specific daemon, while the displayed message still looks good.

• When a system parameter is being set

If you have to set up different system parameters during the system boot, you should use
this format:

Setting parameter to "value".

You can use a statement such as the following to get the quotes right:

echo "Setting DNS domainname to \"$domainname\"."

Note that the same symbol (“) is used for the left and right quotation marks. A grave
accent (‘) is not a quote character; neither is an apostrophe (’).

• When a daemon is stopped or restarted

When you stop or restart a daemon, you should issue a message identical to the startup
message, except that Starting is replaced with Stopping or Restarting respec-
tively.

For example, stopping the printer daemon will look like this:

Stopping printer spooler: lpd.

• When something is executed

There are several examples where you have to run a program at system startup or shut-
down to perform a specific task, for example, setting the system’s clock using netdate
or killing all processes when the system shuts down. Your message should look like this:

Doing something very useful...done.

You should print the done. immediately after the job has been completed, so that the
user is informed why they have to wait. You can get this behavior by saying

echo -n "Doing something very useful..."
do_something
echo "done."

in your script.

• When the configuration is reloaded

When a daemon is forced to reload its configuration files you should use the following
format:

Reloading description configuration...done.

where description is the same as in the daemon starting message.

Chapter 9. The Operating System 77

9.5 Cron jobs

Packages must not modify the configuration file /etc/crontab, and they must not modify
the files in /var/spool/cron/crontabs.

If a package wants to install a job that has to be executed via cron, it should place a file with
the name of the package in one or more of the following directories:

/etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

As these directory names imply, the files within them are executed on an hourly, daily, weekly,
or monthly basis, respectively. The exact times are listed in /etc/crontab.

All files installed in any of these directories must be scripts (e.g., shell scripts or Perl scripts) so
that they can easily be modified by the local system administrator. In addition, they must be
treated as configuration files.

If a certain job has to be executed at some other frequency or at a specific time, the pack-
age should install a file /etc/cron.d/package. This file uses the same syntax as /etc
/crontab and is processed by cron automatically. The file must also be treated as a config-
uration file. (Note that entries in the /etc/cron.d directory are not handled by anacron.
Thus, you should only use this directory for jobs which may be skipped if the system is not
running.)

The scripts or crontab entries in these directories should check if all necessary programs are
installed before they try to execute them. Otherwise, problems will arise when a package was
removed but not purged since configuration files are kept on the system in this situation.

9.6 Menus

The Debian menu package provides a standard interface between packages providing appli-
cations and menu programs (either X window managers or text-based menu programs such as
pdmenu).

All packages that provide applications that need not be passed any special command line argu-
ments for normal operation should register a menu entry for those applications, so that users
of the menu package will automatically get menu entries in their window managers, as well in
shells like pdmenu.

Menu entries should follow the current menu policy.

The menu policy can be found in the menu-policy files in the debian-policy package. It is
also available from the Debian web mirrors at /doc/packaging-manuals/menu-policy/
(http://www.debian.org/doc/packaging-manuals/menu-policy/).

Please also refer to the Debian Menu System documentation that comes with the menu package
for information about how to register your applications.

http://www.debian.org/doc/packaging-manuals/menu-policy/

Chapter 9. The Operating System 78

9.7 Multimedia handlers

MIME (Multipurpose Internet Mail Extensions, RFCs 2045-2049) is a mechanism for encoding
files and data streams and providing meta-information about them, in particular their type
(e.g. audio or video) and format (e.g. PNG, HTML, MP3).

Registration of MIME type handlers allows programs like mail user agents and web browsers
to invoke these handlers to view, edit or display MIME types they don’t support directly.

Packages which provide the ability to view/show/play, compose, edit or print MIME types
should register themselves as such following the current MIME support policy.

The MIME support policy can be found in the mime-policy files in the
debian-policy package. It is also available from the Debian web mirrors at
/doc/packaging-manuals/mime-policy/ (http://www.debian.org/doc/
packaging-manuals/mime-policy/).

9.8 Keyboard configuration

To achieve a consistent keyboard configuration so that all applications interpret a keyboard
event the same way, all programs in the Debian distribution must be configured to comply
with the following guidelines.

The following keys must have the specified interpretations:

<-- delete the character to the left of the cursor

Delete delete the character to the right of the cursor

Control+H emacs: the help prefix

The interpretation of any keyboard events should be independent of the terminal that is used,
be it a virtual console, an X terminal emulator, an rlogin/telnet session, etc.

The following list explains how the different programs should be set up to achieve this:

• <-- generates KB_BackSpace in X.

• Delete generates KB_Delete in X.

• X translations are set up to make KB_Backspace generate ASCII DEL, and to make
KB_Delete generate ESC [3 ~ (this is the vt220 escape code for the ”delete character“
key). This must be done by loading the X resources using xrdb on all local X displays,
not using the application defaults, so that the translation resources used correspond to
the xmodmap settings.

• The Linux console is configured to make <-- generate DEL, and Delete generate ESC
[3 ~.

http://www.debian.org/doc/packaging-manuals/mime-policy/
http://www.debian.org/doc/packaging-manuals/mime-policy/

Chapter 9. The Operating System 79

• X applications are configured so that < deletes left, and Delete deletes right. Motif
applications already work like this.

• Terminals should have stty erase ^? .

• The xterm terminfo entry should have ESC [3 ~ for kdch1, just as for TERM=linux
and TERM=vt220.

• Emacs is programmed to map KB_Backspace or the stty erase character to
delete-backward-char, and KB_Delete or kdch1 to delete-forward-char, and
^H to help as always.

• Other applications use the stty erase character and kdch1 for the two delete keys,
with ASCII DEL being ”delete previous character“ and kdch1 being ”delete character
under cursor“.

This will solve the problem except for the following cases:

• Some terminals have a <-- key that cannot be made to produce anything except ^H. On
these terminals Emacs help will be unavailable on ^H (assuming that the stty erase
character takes precedence in Emacs, and has been set correctly). M-x help or F1 (if
available) can be used instead.

• Some operating systems use ^H for stty erase. However, modern telnet versions and
all rlogin versions propagate stty settings, and almost all UNIX versions honour stty
erase. Where the stty settings are not propagated correctly, things can be made to
work by using stty manually.

• Some systems (including previous Debian versions) use xmodmap to arrange for both
<-- and Delete to generate KB_Delete. We can change the behavior of their X clients
using the same X resources that we use to do it for our own clients, or configure our
clients using their resources when things are the other way around. On displays config-
ured like this Delete will not work, but <-- will.

• Some operating systems have different kdch1 settings in their terminfo database for
xterm and others. On these systems the Delete key will not work correctly when you
log in from a system conforming to our policy, but <-- will.

9.9 Environment variables

A program must not depend on environment variables to get reasonable defaults. (That’s
because these environment variables would have to be set in a system-wide configuration file
like /etc/profile, which is not supported by all shells.)

If a program usually depends on environment variables for its configuration, the program
should be changed to fall back to a reasonable default configuration if these environment vari-
ables are not present. If this cannot be done easily (e.g., if the source code of a non-free program

Chapter 9. The Operating System 80

is not available), the program must be replaced by a small ”wrapper“ shell script which sets
the environment variables if they are not already defined, and calls the original program.

Here is an example of a wrapper script for this purpose:

#!/bin/sh
BAR=${BAR:-/var/lib/fubar}
export BAR
exec /usr/lib/foo/foo "$@"

Furthermore, as /etc/profile is a configuration file of the base-files package, other
packages must not put any environment variables or other commands into that file.

9.10 Registering Documents using doc-base

The doc-base package implements a flexible mechanism for handling and presenting doc-
umentation. The recommended practice is for every Debian package that provides online
documentation (other than just manual pages) to register these documents with doc-base
by installing a doc-base control file via the install-docs script at installation time and
de-register the manuals again when the package is removed.

Please refer to the documentation that comes with the doc-base package for information and
details.

81

Chapter 10

Files

10.1 Binaries

Two different packages must not install programs with different functionality but with the
same filenames. (The case of two programs having the same functionality but different im-
plementations is handled via ”alternatives“ or the ”Conflicts“ mechanism. See ‘Maintainer
Scripts’ on page 15 and ‘Conflicting binary packages - Conflicts’ on page 55 respectively.) If
this case happens, one of the programs must be renamed. The maintainers should report this
to the debian-devel mailing list and try to find a consensus about which program will have
to be renamed. If a consensus cannot be reached, both programs must be renamed.

By default, when a package is being built, any binaries created should include debugging
information, as well as being compiled with optimization. You should also turn on as many
reasonable compilation warnings as possible; this makes life easier for porters, who can then
look at build logs for possible problems. For the C programming language, this means the
following compilation parameters should be used:

CC = gcc
CFLAGS = -O2 -g -Wall # sane warning options vary between programs
LDFLAGS = # none
INSTALL = install -s # (or use strip on the files in debian/tmp)

Note that by default all installed binaries should be stripped, either by using the -s flag to
install, or by calling strip on the binaries after they have been copied into debian/tmp
but before the tree is made into a package.

Although binaries in the build tree should be compiled with debugging information by default,
it can often be difficult to debug programs if they are also subjected to compiler optimiza-
tion. For this reason, it is recommended to support the standardized environment variable
DEB_BUILD_OPTIONS (see ‘debian/rules and DEB_BUILD_OPTIONS’ on page 24). This
variable can contain several flags to change how a package is compiled and built.

It is up to the package maintainer to decide what compilation options are best for the package.
Certain binaries (such as computationally-intensive programs) will function better with certain

Chapter 10. Files 82

flags (-O3, for example); feel free to use them. Please use good judgment here. Don’t use flags
for the sake of it; only use them if there is good reason to do so. Feel free to override the up-
stream author’s ideas about which compilation options are best: they are often inappropriate
for our environment.

10.2 Libraries

If the package is architecture: any, then the shared library compilation and linking flags must
have -fPIC, or the package shall not build on some of the supported architectures1. Any
exception to this rule must be discussed on the mailing list debian-devel@lists.debian.org, and a
rough consensus obtained. The reasons for not compiling with -fPIC flag must be recorded in
the file README.Debian, and care must be taken to either restrict the architecture or arrange
for -fPIC to be used on architectures where it is required.2

As to the static libraries, the common case is not to have relocatable code, since there is
no benefit, unless in specific cases; therefore the static version must not be compiled with
the -fPIC flag. Any exception to this rule should be discussed on the mailing list debian-
devel@lists.debian.org, and the reasons for compiling with the -fPIC flag must be recorded in
the file README.Debian. 3

In other words, if both a shared and a static library is being built, each source unit (*.c, for
example, for C files) will need to be compiled twice, for the normal case.

You must specify the gcc option -D_REENTRANT when building a library (either static or
shared) to make the library compatible with LinuxThreads.

Although not enforced by the build tools, shared libraries must be linked against all libraries
that they use symbols from in the same way that binaries are. This ensures the correct function-
ing of the shlibs system and guarantees that all libraries can be safely opened with dlopen().
Packagers may wish to use the gcc option -Wl,-z,defswhen building a shared library. Since
this option enforces symbol resolution at build time, a missing library reference will be caught
early as a fatal build error.

All installed shared libraries should be stripped with

strip --strip-unneeded your-lib

1If you are using GCC, -fPIC produces code with relocatable position independent code, which is required for
most architectures to create a shared library, with i386 and perhaps some others where non position independent
code is permitted in a shared library. Position independent code may have a performance penalty, especially
on i386. However, in most cases the speed penalty must be measured against the memory wasted on the few
architectures where non position independent code is even possible.

2Some of the reasons why this might be required is if the library contains hand crafted assembly code that is
not relocatable, the speed penalty is excessive for compute intensive libs, and similar reasons.

3Some of the reasons for linking static libraries with the -fPIC flag are if, for example, one needs a Perl API for
a library that is under rapid development, and has an unstable API, so shared libraries are pointless at this phase of
the library’s development. In that case, since Perl needs a library with relocatable code, it may make sense to create
a static library with relocatable code. Another reason cited is if you are distilling various libraries into a common
shared library, like mklibs does in the Debian installer project.

Chapter 10. Files 83

(The option --strip-unneededmakes strip remove only the symbols which aren’t needed
for relocation processing.) Shared libraries can function perfectly well when stripped, since the
symbols for dynamic linking are in a separate part of the ELF object file.4

Note that under some circumstances it may be useful to install a shared library unstripped, for
example when building a separate package to support debugging.

Shared object files (often .so files) that are not public libraries, that is, they are not meant
to be linked to by third party executables (binaries of other packages), should be installed in
subdirectories of the /usr/lib directory. Such files are exempt from the rules that govern
ordinary shared libraries, except that they must not be installed executable and should be
stripped.5

Packages containing shared libraries that may be linked to by other packages’ binaries, but
which for some compelling reason can not be installed in /usr/lib directory, may install the
shared library files in subdirectories of the /usr/lib directory, in which case they should
arrange to add that directory in /etc/ld.so.conf in the package’s post-installation script,
and remove it in the package’s post-removal script.

An ever increasing number of packages are using libtool to do their linking. The latest
GNU libtools (>= 1.3a) can take advantage of the metadata in the installed libtool archive
files (*.la files). The main advantage of libtool’s .la files is that it allows libtool to store
and subsequently access metadata with respect to the libraries it builds. libtool will search
for those files, which contain a lot of useful information about a library (such as library depen-
dency information for static linking). Also, they’re essential for programs using libltdl.6

Packages that use libtool to create shared libraries should include the .la files in the -dev
package, unless the package relies on libtool’s libltdl library, in which case the .la files
must go in the run-time library package.

You must make sure that you use only released versions of shared libraries to build your pack-
ages; otherwise other users will not be able to run your binaries properly. Producing source
packages that depend on unreleased compilers is also usually a bad idea.

10.3 Shared libraries

This section has moved to ‘Shared libraries’ on page 59.

4You might also want to use the options --remove-section=.comment and --remove-section=.note
on both shared libraries and executables, and --strip-debug on static libraries.

5A common example are the so-called ”plug-ins“, internal shared objects that are dynamically loaded by pro-
grams using dlopen(3).

6Although libtool is fully capable of linking against shared libraries which don’t have .la files, as it is a
mere shell script it can add considerably to the build time of a libtool-using package if that shell script has to
derive all this information from first principles for each library every time it is linked. With the advent of libtool
version 1.4 (and to a lesser extent libtool version 1.3), the .la files also store information about inter-library
dependencies which cannot necessarily be derived after the .la file is deleted.

Chapter 10. Files 84

10.4 Scripts

All command scripts, including the package maintainer scripts inside the package and used
by dpkg, should have a #! line naming the shell to be used to interpret them.

In the case of Perl scripts this should be #!/usr/bin/perl.

When scripts are installed into a directory in the system PATH, the script name should not
include an extension such as .sh or .pl that denotes the scripting language currently used to
implement it.

Shell scripts (sh and bash) should almost certainly start with set -e so that errors are de-
tected. Every script should use set -e or check the exit status of every command.

Scripts may assume that /bin/sh implements the SUSv3 Shell Command Language7 plus the
following additional features not mandated by SUSv3:8

• echo -n, if implemented as a shell built-in, must not generate a newline.

• test, if implemented as a shell built-in, must support -a and -o as binary logical oper-
ators.

• local to create a scoped variable must be supported; however, local may or may not
preserve the variable value from an outer scope and may or may not support arguments
more complex than simple variables. Only uses such as:

fname () {
local a
a=’’
... use a ...

}

must be supported.

If a shell script requires non-SUSv3 features from the shell interpreter other than those listed
above, the appropriate shell must be specified in the first line of the script (e.g., #!/bin/bash)
and the package must depend on the package providing the shell (unless the shell package is
marked ”Essential“, as in the case of bash).

You may wish to restrict your script to SUSv3 features plus the above set when possible so that
it may use /bin/sh as its interpreter. If your script works with dash (originally called ash),
it probably complies with the above requirements, but if you are in doubt, use /bin/bash.

Perl scripts should check for errors when making any system calls, including open, print,
close, rename and system.

7Single UNIX Specification, version 3, which is also IEEE 1003.1-2004 (POSIX), and is available on the World
Wide Web from The Open Group (http://www.unix.org/version3/online.html) after free registration.

8These features are in widespread use in the Linux community and are implemented in all of bash, dash, and
ksh, the most common shells users may wish to use as /bin/sh.

http://www.unix.org/version3/online.html

Chapter 10. Files 85

csh and tcsh should be avoided as scripting languages. See Csh Programming Considered
Harmful, one of the comp.unix.* FAQs, which can be found at http://www.faqs.org/
faqs/unix-faq/shell/csh-whynot/. If an upstream package comes with csh scripts
then you must make sure that they start with #!/bin/csh and make your package depend
on the c-shell virtual package.

Any scripts which create files in world-writeable directories (e.g., in /tmp) must use a mecha-
nism which will fail atomically if a file with the same name already exists.

The Debian base system provides the tempfile and mktemp utilities for use by scripts for
this purpose.

10.5 Symbolic links

In general, symbolic links within a top-level directory should be relative, and symbolic links
pointing from one top-level directory into another should be absolute. (A top-level directory
is a sub-directory of the root directory /.)

In addition, symbolic links should be specified as short as possible, i.e., link targets like foo
/.. /bar are deprecated.

Note that when creating a relative link using ln it is not necessary for the target of the link to
exist relative to the working directory you’re running ln from, nor is it necessary to change
directory to the directory where the link is to be made. Simply include the string that should
appear as the target of the link (this will be a pathname relative to the directory in which the
link resides) as the first argument to ln.

For example, in your Makefile or debian/rules, you can do things like:

ln -fs gcc $(prefix)/bin/cc
ln -fs gcc debian/tmp/usr/bin/cc
ln -fs ../sbin/sendmail $(prefix)/bin/runq
ln -fs ../sbin/sendmail debian/tmp/usr/bin/runq

A symbolic link pointing to a compressed file should always have the same file extension as
the referenced file. (For example, if a file foo.gz is referenced by a symbolic link, the filename
of the link has to end with ”.gz“ too, as in bar.gz.)

10.6 Device files

Packages must not include device files in the package file tree.

If a package needs any special device files that are not included in the base system, it must call
MAKEDEV in the postinst script, after notifying the user9.

9This notification could be done via a (low-priority) debconf message, or an echo (printf) statement.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Chapter 10. Files 86

Packages must not remove any device files in the postrm or any other script. This is left to the
system administrator.

Debian uses the serial devices /dev/ttyS*. Programs using the old /dev/cu* devices
should be changed to use /dev/ttyS*.

10.7 Configuration files

10.7.1 Definitions

configuration file A file that affects the operation of a program, or provides site- or host-
specific information, or otherwise customizes the behavior of a program. Typically, con-
figuration files are intended to be modified by the system administrator (if needed or
desired) to conform to local policy or to provide more useful site-specific behavior.

conffile A file listed in a package’s conffiles file, and is treated specially by dpkg (see
‘Details of configuration’ on page 48).

The distinction between these two is important; they are not interchangeable concepts. Almost
all conffiles are configuration files, but many configuration files are not conffiles.

As noted elsewhere, /etc/init.d scripts, /etc/default files, scripts installed in /etc
/cron.{hourly,daily,weekly,monthly}, and cron configuration installed in /etc
/cron.d must be treated as configuration files. In general, any script that embeds configu-
ration information is de-facto a configuration file and should be treated as such.

10.7.2 Location

Any configuration files created or used by your package must reside in /etc. If there are
several, consider creating a subdirectory of /etc named after your package.

If your package creates or uses configuration files outside of /etc, and it is not feasible to
modify the package to use /etc directly, put the files in /etc and create symbolic links to
those files from the location that the package requires.

10.7.3 Behavior

Configuration file handling must conform to the following behavior:
• local changes must be preserved during a package upgrade, and
• configuration files must be preserved when the package is removed, and only deleted

when the package is purged.

The easy way to achieve this behavior is to make the configuration file a conffile. This
is appropriate only if it is possible to distribute a default version that will work for most in-
stallations, although some system administrators may choose to modify it. This implies that

Chapter 10. Files 87

the default version will be part of the package distribution, and must not be modified by the
maintainer scripts during installation (or at any other time).

In order to ensure that local changes are preserved correctly, no package may contain or make
hard links to conffiles.10

The other way to do it is via the maintainer scripts. In this case, the configuration file must
not be listed as a conffile and must not be part of the package distribution. If the existence
of a file is required for the package to be sensibly configured it is the responsibility of the
package maintainer to provide maintainer scripts which correctly create, update and maintain
the file and remove it on purge. (See ‘Package maintainer scripts and installation procedure’ on
page 43 for more information.) These scripts must be idempotent (i.e., must work correctly if
dpkg needs to re-run them due to errors during installation or removal), must cope with all the
variety of ways dpkg can call maintainer scripts, must not overwrite or otherwise mangle the
user’s configuration without asking, must not ask unnecessary questions (particularly during
upgrades), and must otherwise be good citizens.

The scripts are not required to configure every possible option for the package, but only those
necessary to get the package running on a given system. Ideally the sysadmin should not have
to do any configuration other than that done (semi-)automatically by the postinst script.

A common practice is to create a script called package-configure and have the package’s
postinst call it if and only if the configuration file does not already exist. In certain cases
it is useful for there to be an example or template file which the maintainer scripts use. Such
files should be in /usr/share/package or /usr/lib/package (depending on whether
they are architecture-independent or not). There should be symbolic links to them from /usr
/share/doc/package/examples if they are examples, and should be perfectly ordinary
dpkg-handled files (not configuration files).

These two styles of configuration file handling must not be mixed, for that way lies madness:
dpkg will ask about overwriting the file every time the package is upgraded.

10.7.4 Sharing configuration files

Packages which specify the same file as a conffile must be tagged as conflicting with each
other. (This is an instance of the general rule about not sharing files. Note that neither alter-
natives nor diversions are likely to be appropriate in this case; in particular, dpkg does not
handle diverted conffiles well.)

The maintainer scripts must not alter a conffile of any package, including the one the scripts
belong to.

If two or more packages use the same configuration file and it is reasonable for both to be in-
stalled at the same time, one of these packages must be defined as owner of the configuration
file, i.e., it will be the package which handles that file as a configuration file. Other packages

10Rationale: There are two problems with hard links. The first is that some editors break the link while editing
one of the files, so that the two files may unwittingly become unlinked and different. The second is that dpkg might
break the hard link while upgrading conffiles.

Chapter 10. Files 88

that use the configuration file must depend on the owning package if they require the con-
figuration file to operate. If the other package will use the configuration file if present, but is
capable of operating without it, no dependency need be declared.

If it is desirable for two or more related packages to share a configuration file and for all of
the related packages to be able to modify that configuration file, then the following should be
done:

1 One of the related packages (the ”owning“ package) will manage the configuration file
with maintainer scripts as described in the previous section.

2 The owning package should also provide a program that the other packages may use to
modify the configuration file.

3 The related packages must use the provided program to make any desired modifications
to the configuration file. They should either depend on the core package to guaran-
tee that the configuration modifier program is available or accept gracefully that they
cannot modify the configuration file if it is not. (This is in addition to the fact that the
configuration file may not even be present in the latter scenario.)

Sometimes it’s appropriate to create a new package which provides the basic infrastructure
for the other packages and which manages the shared configuration files. (The sgml-base
package is a good example.)

10.7.5 User configuration files (”dotfiles“)

The files in /etc/skel will automatically be copied into new user accounts by adduser. No
other program should reference the files in /etc/skel.

Therefore, if a program needs a dotfile to exist in advance in $HOME to work sensibly, that
dotfile should be installed in /etc/skel and treated as a configuration file.

However, programs that require dotfiles in order to operate sensibly are a bad thing, unless
they do create the dotfiles themselves automatically.

Furthermore, programs should be configured by the Debian default installation to behave as
closely to the upstream default behavior as possible.

Therefore, if a program in a Debian package needs to be configured in some way in order to
operate sensibly, that should be done using a site-wide configuration file placed in /etc. Only
if the program doesn’t support a site-wide default configuration and the package maintainer
doesn’t have time to add it may a default per-user file be placed in /etc/skel.

/etc/skel should be as empty as we can make it. This is particularly true because there is no
easy (or necessarily desirable) mechanism for ensuring that the appropriate dotfiles are copied
into the accounts of existing users when a package is installed.

10.8 Log files

Log files should usually be named /var/log/package.log. If you have many log files, or
need a separate directory for permission reasons (/var/log is writable only by root), you

Chapter 10. Files 89

should usually create a directory named /var/log/package and place your log files there.

Log files must be rotated occasionally so that they don’t grow indefinitely; the best way to do
this is to drop a log rotation configuration file into the directory /etc/logrotate.d and use
the facilities provided by logrotate.11 Here is a good example for a logrotate config file (for
more information see logrotate(8)):

/var/log/foo/*.log {
rotate 12
weekly
compress
postrotate
/etc/init.d/foo force-reload
endscript
}

This rotates all files under /var/log/foo, saves 12 compressed generations, and forces the
daemon to reload its configuration information after the log rotation.

Log files should be removed when the package is purged (but not when it is only removed).
This should be done by the postrm script when it is called with the argument purge (see
‘Details of removal and/or configuration purging’ on page 49).

10.9 Permissions and owners

The rules in this section are guidelines for general use. If necessary you may deviate from the
details below. However, if you do so you must make sure that what is done is secure and you
should try to be as consistent as possible with the rest of the system. You should probably also
discuss it on debian-devel first.

Files should be owned by root.root, and made writable only by the owner and universally
readable (and executable, if appropriate), that is mode 644 or 755.

Directories should be mode 755 or (for group-writability) mode 2775. The ownership of the
directory should be consistent with its mode: if a directory is mode 2775, it should be owned
by the group that needs write access to it.12

11The traditional approach to log files has been to set up ad hoc log rotation schemes using simple shell scripts
and cron. While this approach is highly customizable, it requires quite a lot of sysadmin work. Even though the
original Debian system helped a little by automatically installing a system which can be used as a template, this
was deemed not enough. The use of logrotate, a program developed by Red Hat, is better, as it centralizes log
management. It has both a configuration file (/etc/logrotate.conf) and a directory where packages can drop
their individual log rotation configurations (/etc/logrotate.d).

12When a package is upgraded, and the owner or permissions of a file included in the package has changed,
dpkg arranges for the ownership and permissions to be correctly set upon installation. However, this does not
extend to directories; the permissions and ownership of directories already on the system does not change on
install or upgrade of packages. This makes sense, since otherwise common directories like /usr would always be
in flux. To correctly change permissions of a directory the package owns, explicit action is required, usually in the
postinst script. Care must be taken to handle downgrades as well, in that case.

Chapter 10. Files 90

Setuid and setgid executables should be mode 4755 or 2755 respectively, and owned by the
appropriate user or group. They should not be made unreadable (modes like 4711 or 2711
or even 4111); doing so achieves no extra security, because anyone can find the binary in the
freely available Debian package; it is merely inconvenient. For the same reason you should not
restrict read or execute permissions on non-set-id executables.

Some setuid programs need to be restricted to particular sets of users, using file permissions.
In this case they should be owned by the uid to which they are set-id, and by the group which
should be allowed to execute them. They should have mode 4754; again there is no point in
making them unreadable to those users who must not be allowed to execute them.

It is possible to arrange that the system administrator can reconfigure the package to corre-
spond to their local security policy by changing the permissions on a binary: they can do this
by using dpkg-statoverride, as described below.13 Another method you should consider
is to create a group for people allowed to use the program(s) and make any setuid executables
executable only by that group.

If you need to create a new user or group for your package there are two possibilities. Firstly,
you may need to make some files in the binary package be owned by this user or group, or you
may need to compile the user or group id (rather than just the name) into the binary (though
this latter should be avoided if possible, as in this case you need a statically allocated id).

If you need a statically allocated id, you must ask for a user or group id from the base-passwd
maintainer, and must not release the package until you have been allocated one. Once you
have been allocated one you must either make the package depend on a version of the
base-passwd package with the id present in /etc/passwd or /etc/group, or arrange
for your package to create the user or group itself with the correct id (using adduser) in its
preinst or postinst. (Doing it in the postinst is to be preferred if it is possible, otherwise
a pre-dependency will be needed on the adduser package.)

On the other hand, the program might be able to determine the uid or gid from the user or
group name at runtime, so that a dynamically allocated id can be used. In this case you should
choose an appropriate user or group name, discussing this on debian-devel and checking
with the base-passwd maintainer that it is unique and that they do not wish you to use a
statically allocated id instead. When this has been checked you must arrange for your package
to create the user or group if necessary using adduser in the preinst or postinst script
(again, the latter is to be preferred if it is possible).

Note that changing the numeric value of an id associated with a name is very difficult, and
involves searching the file system for all appropriate files. You need to think carefully whether
a static or dynamic id is required, since changing your mind later will cause problems.

13Ordinary files installed by dpkg (as opposed to conffiles and other similar objects) normally have
their permissions reset to the distributed permissions when the package is reinstalled. However, the use of
dpkg-statoverride overrides this default behavior. If you use this method, you should remember to describe
dpkg-statoverride in the package documentation; being a relatively new addition to Debian, it is probably not
yet well-known.

Chapter 10. Files 91

10.9.1 The use of dpkg-statoverride

This section is not intended as policy, but as a description of the use of dpkg-statoverride.

If a system administrator wishes to have a file (or directory or other such thing) installed with
owner and permissions different from those in the distributed Debian package, they can use
the dpkg-statoverride program to instruct dpkg to use the different settings every time
the file is installed. Thus the package maintainer should distribute the files with their normal
permissions, and leave it for the system administrator to make any desired changes. For exam-
ple, a daemon which is normally required to be setuid root, but in certain situations could be
used without being setuid, should be installed setuid in the .deb. Then the local system ad-
ministrator can change this if they wish. If there are two standard ways of doing it, the package
maintainer can use debconf to find out the preference, and call dpkg-statoverride in the
maintainer script if necessary to accommodate the system administrator’s choice. Care must
be taken during upgrades to not override an existing setting.

Given the above, dpkg-statoverride is essentially a tool for system administrators and
would not normally be needed in the maintainer scripts. There is one type of situation, though,
where calls to dpkg-statoverride would be needed in the maintainer scripts, and that
involves packages which use dynamically allocated user or group ids. In such a situation,
something like the following idiom can be very helpful in the package’s postinst, where
sysuser is a dynamically allocated id:

for i in /usr/bin/foo /usr/sbin/bar
do

only do something when no setting exists
if ! dpkg-statoverride --list $i >/dev/null 2>&1
then

#include: debconf processing, question about foo and bar
if ["$RET" = "true"] ; then

dpkg-statoverride --update --add sysuser root 4755 $i
fi

fi
done

The corresponding dpkg-statoverride --remove calls can then be made unconditionally
when the package is purged.

Chapter 10. Files 92

93

Chapter 11

Customized programs

11.1 Architecture specification strings

If a program needs to specify an architecture specification string in some place, it should select one
of the strings provided by dpkg-architecture -L. The strings are in the format os-arch,
though the OS part is sometimes elided, as when the OS is Linux.1

Note that we don’t want to use arch-debian-linux to apply to the rule
architecture-vendor-os since this would make our programs incompatible with
other Linux distributions. We also don’t use something like arch-unknown-linux, since the
unknown does not look very good.

1Currently, the strings are: i386 ia64 alpha amd64 armeb arm hppa m32r m68k mips mipsel powerpc ppc64
s390 s390x sh3 sh3eb sh4 sh4eb sparc darwin-i386 darwin-ia64 darwin-alpha darwin-amd64 darwin-armeb darwin-
arm darwin-hppa darwin-m32r darwin-m68k darwin-mips darwin-mipsel darwin-powerpc darwin-ppc64 darwin-
s390 darwin-s390x darwin-sh3 darwin-sh3eb darwin-sh4 darwin-sh4eb darwin-sparc freebsd-i386 freebsd-ia64
freebsd-alpha freebsd-amd64 freebsd-armeb freebsd-arm freebsd-hppa freebsd-m32r freebsd-m68k freebsd-mips
freebsd-mipsel freebsd-powerpc freebsd-ppc64 freebsd-s390 freebsd-s390x freebsd-sh3 freebsd-sh3eb freebsd-sh4
freebsd-sh4eb freebsd-sparc kfreebsd-i386 kfreebsd-ia64 kfreebsd-alpha kfreebsd-amd64 kfreebsd-armeb kfreebsd-
arm kfreebsd-hppa kfreebsd-m32r kfreebsd-m68k kfreebsd-mips kfreebsd-mipsel kfreebsd-powerpc kfreebsd-
ppc64 kfreebsd-s390 kfreebsd-s390x kfreebsd-sh3 kfreebsd-sh3eb kfreebsd-sh4 kfreebsd-sh4eb kfreebsd-sparc
knetbsd-i386 knetbsd-ia64 knetbsd-alpha knetbsd-amd64 knetbsd-armeb knetbsd-arm knetbsd-hppa knetbsd-
m32r knetbsd-m68k knetbsd-mips knetbsd-mipsel knetbsd-powerpc knetbsd-ppc64 knetbsd-s390 knetbsd-s390x
knetbsd-sh3 knetbsd-sh3eb knetbsd-sh4 knetbsd-sh4eb knetbsd-sparc netbsd-i386 netbsd-ia64 netbsd-alpha
netbsd-amd64 netbsd-armeb netbsd-arm netbsd-hppa netbsd-m32r netbsd-m68k netbsd-mips netbsd-mipsel
netbsd-powerpc netbsd-ppc64 netbsd-s390 netbsd-s390x netbsd-sh3 netbsd-sh3eb netbsd-sh4 netbsd-sh4eb netbsd-
sparc openbsd-i386 openbsd-ia64 openbsd-alpha openbsd-amd64 openbsd-armeb openbsd-arm openbsd-hppa
openbsd-m32r openbsd-m68k openbsd-mips openbsd-mipsel openbsd-powerpc openbsd-ppc64 openbsd-s390
openbsd-s390x openbsd-sh3 openbsd-sh3eb openbsd-sh4 openbsd-sh4eb openbsd-sparc hurd-i386 hurd-ia64 hurd-
alpha hurd-amd64 hurd-armeb hurd-arm hurd-hppa hurd-m32r hurd-m68k hurd-mips hurd-mipsel hurd-powerpc
hurd-ppc64 hurd-s390 hurd-s390x hurd-sh3 hurd-sh3eb hurd-sh4 hurd-sh4eb hurd-sparc

Chapter 11. Customized programs 94

11.2 Daemons

The configuration files /etc/services, /etc/protocols, and /etc/rpc are managed by
the netbase package and must not be modified by other packages.

If a package requires a new entry in one of these files, the maintainer should get in contact with
the netbase maintainer, who will add the entries and release a new version of the netbase
package.

The configuration file /etc/inetd.conf must not be modified by the package’s scripts ex-
cept via the update-inetd script or the DebianNet.pm Perl module. See their documenta-
tion for details on how to add entries.

If a package wants to install an example entry into /etc/inetd.conf, the entry must be
preceded with exactly one hash character (#). Such lines are treated as ”commented out by
user“ by the update-inetd script and are not changed or activated during package updates.

11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog

Some programs need to create pseudo-ttys. This should be done using Unix98 ptys if the C
library supports it. The resulting program must not be installed setuid root, unless that is
required for other functionality.

The files /var/run/utmp, /var/log/wtmp and /var/log/lastlog must be installed
writable by group utmp. Programs which need to modify those files must be installed set-
gid utmp.

11.4 Editors and pagers

Some programs have the ability to launch an editor or pager program to edit or display a
text document. Since there are lots of different editors and pagers available in the Debian
distribution, the system administrator and each user should have the possibility to choose
their preferred editor and pager.

In addition, every program should choose a good default editor/pager if none is selected by
the user or system administrator.

Thus, every program that launches an editor or pager must use the EDITOR or PAGER envi-
ronment variable to determine the editor or pager the user wishes to use. If these variables
are not set, the programs /usr/bin/editor and /usr/bin/pager should be used, respec-
tively.

These two files are managed through the dpkg ”alternatives“ mechanism. Thus every package
providing an editor or pager must call the update-alternatives script to register these
programs.

Chapter 11. Customized programs 95

If it is very hard to adapt a program to make use of the EDITOR or PAGER variables,
that program may be configured to use /usr/bin/sensible-editor and /usr/bin
/sensible-pager as the editor or pager program respectively. These are two scripts pro-
vided in the Debian base system that check the EDITOR and PAGER variables and launch
the appropriate program, and fall back to /usr/bin/editor and /usr/bin/pager if the
variable is not set.

A program may also use the VISUAL environment variable to determine the user’s choice of
editor. If it exists, it should take precedence over EDITOR. This is in fact what /usr/bin
/sensible-editor does.

It is not required for a package to depend on editor and pager, nor is it required for a
package to provide such virtual packages.2

11.5 Web servers and applications

This section describes the locations and URLs that should be used by all web servers and web
applications in the Debian system.

1 Cgi-bin executable files are installed in the directory

/usr/lib/cgi-bin/cgi-bin-name

and should be referred to as

http://localhost/cgi-bin/cgi-bin-name

2 Access to HTML documents

HTML documents for a package are stored in /usr/share/doc/package and can be
referred to as

http://localhost/doc/package/filename

The web server should restrict access to the document tree so that only clients on the same
host can read the documents. If the web server does not support such access controls,
then it should not provide access at all, or ask about providing access during installation.

3 Access to images

It is recommended that images for a package be stored in
/usr/share/images/package and may be referred to through an alias /images/ as

http://localhost/images/<package>/<filename>

2The Debian base system already provides an editor and a pager program.

Chapter 11. Customized programs 96

4 Web Document Root

Web Applications should try to avoid storing files in the Web Document Root. Instead
they should use the /usr/share/doc/package directory for documents and register the
Web Application via the doc-base package. If access to the web document root is un-
avoidable then use

/var/www

as the Document Root. This might be just a symbolic link to the location where the system
administrator has put the real document root.

5 Providing httpd and/or httpd-cgi

All web servers should provide the virtual package httpd. If a web server has CGI
support it should provide httpd-cgi additionally.

All web applications which do not contain CGI scripts should depend on httpd, all those
web applications which do contain CGI scripts, should depend on httpd-cgi.

11.6 Mail transport, delivery and user agents

Debian packages which process electronic mail, whether mail user agents (MUAs) or mail
transport agents (MTAs), must ensure that they are compatible with the configuration deci-
sions below. Failure to do this may result in lost mail, broken From: lines, and other serious
brain damage!

The mail spool is /var/mail and the interface to send a mail message is /usr/sbin
/sendmail (as per the FHS). On older systems, the mail spool may be physically located
in /var/spool/mail, but all access to the mail spool should be via the /var/mail symlink.
The mail spool is part of the base system and not part of the MTA package.

All Debian MUAs, MTAs, MDAs and other mailbox accessing programs (such as IMAP dae-
mons) must lock the mailbox in an NFS-safe way. This means that fcntl() locking must be
combined with dot locking. To avoid deadlocks, a program should use fcntl() first and dot
locking after this, or alternatively implement the two locking methods in a non blocking way3.
Using the functions maillock and mailunlock provided by the liblockfile*4 packages
is the recommended way to realize this.

Mailboxes are generally mode 660 user.mail unless the system administrator has chosen
otherwise. A MUA may remove a mailbox (unless it has nonstandard permissions) in which
case the MTA or another MUA must recreate it if needed. Mailboxes must be writable by group
mail.

The mail spool is 2775 root.mail, and MUAs should be setgid mail to do the locking men-
tioned above (and must obviously avoid accessing other users’ mailboxes using this privilege).

3If it is not possible to establish both locks, the system shouldn’t wait for the second lock to be established, but
remove the first lock, wait a (random) time, and start over locking again.

4You will need to depend on liblockfile1 (>>1.01) to use these functions.

Chapter 11. Customized programs 97

/etc/aliases is the source file for the system mail aliases (e.g., postmaster, usenet, etc.), it is
the one which the sysadmin and postinst scripts may edit. After /etc/aliases is edited
the program or human editing it must call newaliases. All MTA packages must come with
a newaliases program, even if it does nothing, but older MTA packages did not do this so
programs should not fail if newaliases cannot be found. Note that because of this, all MTA
packages must have Provides, Conflicts and Replaces: mail-transport-agent
control file fields.

The convention of writing forward to address in the mailbox itself is not supported. Use
a .forward file instead.

The rmail program used by UUCP for incoming mail should be /usr/sbin/rmail. Like-
wise, rsmtp, for receiving batch-SMTP-over-UUCP, should be /usr/sbin/rsmtp if it is sup-
ported.

If your package needs to know what hostname to use on (for example) outgoing news and mail
messages which are generated locally, you should use the file /etc/mailname. It will contain
the portion after the username and @ (at) sign for email addresses of users on the machine
(followed by a newline).

Such a package should check for the existence of this file when it is being configured. If it ex-
ists, it should be used without comment, although an MTA’s configuration script may wish to
prompt the user even if it finds that this file exists. If the file does not exist, the package should
prompt the user for the value (preferably using debconf) and store it in /etc/mailname as
well as using it in the package’s configuration. The prompt should make it clear that the name
will not just be used by that package. For example, in this situation the inn package could say
something like:

Please enter the "mail name" of your system. This is the
hostname portion of the address to be shown on outgoing
news and mail messages. The default is
syshostname, your system’s host name. Mail
name ["syshostname"]:

where syshostname is the output of hostname --fqdn.

11.7 News system configuration

All the configuration files related to the NNTP (news) servers and clients should be located
under /etc/news.

There are some configuration issues that apply to a number of news clients and server packages
on the machine. These are:

/etc/news/organization A string which should appear as the organization header for all
messages posted by NNTP clients on the machine

/etc/news/server Contains the FQDN of the upstream NNTP server, or localhost if the
local machine is an NNTP server.

Chapter 11. Customized programs 98

Other global files may be added as required for cross-package news configuration.

11.8 Programs for the X Window System

11.8.1 Providing X support and package priorities

Programs that can be configured with support for the X Window System must be configured to
do so and must declare any package dependencies necessary to satisfy their runtime require-
ments when using the X Window System. If such a package is of higher priority than the X
packages on which it depends, it is required that either the X-specific components be split into
a separate package, or that an alternative version of the package, which includes X support, be
provided, or that the package’s priority be lowered.

11.8.2 Packages providing an X server

Packages that provide an X server that, directly or indirectly, communicates with real input
and display hardware should declare in their control data that they provide the virtual package
xserver.5

11.8.3 Packages providing a terminal emulator

Packages that provide a terminal emulator for the X Window System which meet the crite-
ria listed below should declare in their control data that they provide the virtual package
x-terminal-emulator. They should also register themselves as an alternative for /usr
/bin/x-terminal-emulator, with a priority of 20.

To be an x-terminal-emulator, a program must:
• Be able to emulate a DEC VT100 terminal, or a compatible terminal.
• Support the command-line option -e command, which creates a new terminal window6

and runs the specified command, interpreting the entirety of the rest of the command line
as a command to pass straight to exec, in the manner that xterm does.

• Support the command-line option -T title, which creates a new terminal window
with the window title title.

5This implements current practice, and provides an actual policy for usage of the xserver virtual package
which appears in the virtual packages list. In a nutshell, X servers that interface directly with the display and input
hardware or via another subsystem (e.g., GGI) should provide xserver. Things like Xvfb, Xnest, and Xprt
should not.

6”New terminal window“ does not necessarily mean a new top-level X window directly parented by the win-
dow manager; it could, if the terminal emulator application were so coded, be a new ”view“ in a multiple-document
interface (MDI).

Chapter 11. Customized programs 99

11.8.4 Packages providing a window manager

Packages that provide a window manager should declare in their control data that they pro-
vide the virtual package x-window-manager. They should also register themselves as an
alternative for /usr/bin/x-window-manager, with a priority calculated as follows:

• Start with a priority of 20.
• If the window manager supports the Debian menu system, add 20 points if this support

is available in the package’s default configuration (i.e., no configuration files belonging
to the system or user have to be edited to activate the feature); if configuration files must
be modified, add only 10 points.

• If the window manager complies with The Window Manager Specification Project
(http://www.freedesktop.org/Standards/wm-spec), written by the Free Desk-
top Group (http://www.freedesktop.org/), add 40 points.

• If the window manager permits the X session to be restarted using a different window
manager (without killing the X server) in its default configuration, add 10 points; other-
wise add none.

11.8.5 Packages providing fonts

Packages that provide fonts for the X Window System7 must do a number of things to ensure
that they are both available without modification of the X or font server configuration, and that
they do not corrupt files used by other font packages to register information about themselves.

1 Fonts of any type supported by the X Window System must be in a separate binary pack-
age from any executables, libraries, or documentation (except that specific to the fonts
shipped, such as their license information). If one or more of the fonts so packaged are
necessary for proper operation of the package with which they are associated the font
package may be Recommended; if the fonts merely provide an enhancement, a Suggests
relationship may be used. Packages must not Depend on font packages.8

2 BDF fonts must be converted to PCF fonts with the bdftopcf utility (available in the
xfonts-utils package, gzipped, and placed in a directory that corresponds to their
resolution:

• 100 dpi fonts must be placed in /usr/share/fonts/X11/100dpi/.
• 75 dpi fonts must be placed in /usr/share/fonts/X11/75dpi/.
• Character-cell fonts, cursor fonts, and other low-resolution fonts must be placed in
/usr/share/fonts/X11/misc/.

3 Speedo fonts must be placed in /usr/share/fonts/X11/Speedo/.

7For the purposes of Debian Policy, a ”font for the X Window System“ is one which is accessed via X protocol
requests. Fonts for the Linux console, for PostScript renderer, or any other purpose, do not fit this definition. Any
tool which makes such fonts available to the X Window System, however, must abide by this font policy.

8This is because the X server may retrieve fonts from the local file system or over the network from an X font
server; the Debian package system is empowered to deal only with the local file system.

http://www.freedesktop.org/Standards/wm-spec
http://www.freedesktop.org/

Chapter 11. Customized programs 100

4 Type 1 fonts must be placed in /usr/share/fonts/X11/Type1/. If font metric files
are available, they must be placed here as well.

5 Subdirectories of /usr/share/fonts/X11/ other than those listed above must be nei-
ther created nor used. (The PEX, CID, and cyrillic directories are excepted for histor-
ical reasons, but installation of files into these directories remains discouraged.)

6 Font packages may, instead of placing files directly in the X font directories listed above,
provide symbolic links in that font directory pointing to the files’ actual location in the
filesystem. Such a location must comply with the FHS.

7 Font packages should not contain both 75dpi and 100dpi versions of a font. If both are
available, they should be provided in separate binary packages with -75dpi or -100dpi
appended to the names of the packages containing the corresponding fonts.

8 Fonts destined for the misc subdirectory should not be included in the same package
as 75dpi or 100dpi fonts; instead, they should be provided in a separate package with
-misc appended to its name.

9 Font packages must not provide the files fonts.dir, fonts.alias, or fonts.scale
in a font directory:

• fonts.dir files must not be provided at all.

• fonts.alias and fonts.scale files, if needed, should be provided in the di-
rectory /etc/X11/fonts/fontdir/package.extension, where fontdir is the
name of the subdirectory of /usr/share/fonts/X11/ where the package’s cor-
responding fonts are stored (e.g., 75dpi or misc), package is the name of the pack-
age that provides these fonts, and extension is either scale or alias, whichever
corresponds to the file contents.

10 Font packages must declare a dependency on xfonts-utils in their control data.

11 Font packages that provide one or more fonts.scale files as described above must
invoke update-fonts-scale on each directory into which they installed fonts before
invoking update-fonts-dir on that directory. This invocation must occur in both the
postinst (for all arguments) and postrm (for all arguments except upgrade) scripts.

12 Font packages that provide one or more fonts.alias files as described above must
invoke update-fonts-alias on each directory into which they installed fonts. This
invocation must occur in both the postinst (for all arguments) and postrm (for all
arguments except upgrade) scripts.

13 Font packages must invoke update-fonts-dir on each directory into which they in-
stalled fonts. This invocation must occur in both the postinst (for all arguments) and
postrm (for all arguments except upgrade) scripts.

14 Font packages must not provide alias names for the fonts they include which collide with
alias names already in use by fonts already packaged.

Chapter 11. Customized programs 101

15 Font packages must not provide fonts with the same XLFD registry name as another font
already packaged.

11.8.6 Application defaults files

Application defaults files must be installed in the directory /etc/X11/app-defaults/ (use
of a localized subdirectory of /etc/X11/ as described in the X Toolkit Intrinsics - C Language
Interface manual is also permitted). They must be registered as conffiles or handled as
configuration files.

Customization of programs’ X resources may also be supported with the provision of a file
with the same name as that of the package placed in the /etc/X11/Xresources/ directory,
which must registered as a conffile or handled as a configuration file.9

11.8.7 Installation directory issues

Packages using the X Window System should not be configured to install files under the /usr
/X11R6/ directory. The /usr/X11R6/ directory hierarchy should be regarded as obsolete.

Programs that use GNU autoconf and automake are usually easily configured at compile
time to use /usr/ instead of /usr/X11R6/, and this should be done whenever possible. Con-
figuration files for window managers and display managers should be placed in a subdirectory
of /etc/X11/ corresponding to the package name due to these programs’ tight integration
with the mechanisms of the X Window System. Application-level programs should use the
/etc/ directory unless otherwise mandated by policy.

The installation of files into subdirectories of /usr/X11R6/include/X11/ and /usr/X11R6
/lib/X11/ is now prohibited; package maintainers should determine if subdirectories of
/usr/lib/ and /usr/share/ can be used instead.

Packages should install any relevant files into the directories /usr/include/X11/ and /usr
/lib/X11/, but if they do so, they must pre-depend on x11-common (>= 1:7.0.0)10

11.8.8 The OSF/Motif and OpenMotif libraries

Programs that require the non-DFSG-compliant OSF/Motif or OpenMotif libraries11 should be com-
piled against and tested with LessTif (a free re-implementation of Motif) instead. If the main-
tainer judges that the program or programs do not work sufficiently well with LessTif to be
distributed and supported, but do so when compiled against Motif, then two versions of the

9Note that this mechanism is not the same as using app-defaults; app-defaults are tied to the client binary on
the local file system, whereas X resources are stored in the X server and affect all connecting clients.

10These libraries used to be all symbolic links. However, with X11R7, /usr/include/X11 and
/usr/lib/X11 are now real directories, and packages should ship their files here instead of in
/usr/X11R6/{include,lib}/X11. x11-common (>= 1:7.0.0) is the package responsible for converting
these symlinks into directories.

11OSF/Motif and OpenMotif are collectively referred to as ”Motif“ in this policy document.

Chapter 11. Customized programs 102

package should be created; one linked statically against Motif and with -smotif appended to
the package name, and one linked dynamically against Motif and with -dmotif appended to
the package name.

Both Motif-linked versions are dependent upon non-DFSG-compliant software and thus can-
not be uploaded to the main distribution; if the software is itself DFSG-compliant it may be
uploaded to the contrib distribution. While known existing versions of Motif permit unlimited
redistribution of binaries linked against the library (whether statically or dynamically), it is the
package maintainer’s responsibility to determine whether this is permitted by the license of
the copy of Motif in their possession.

11.9 Perl programs and modules

Perl programs and modules should follow the current Perl policy.

The Perl policy can be found in the perl-policy files in the debian-policy package. It is
also available from the Debian web mirrors at /doc/packaging-manuals/perl-policy/
(http://www.debian.org/doc/packaging-manuals/perl-policy/).

11.10 Emacs lisp programs

Please refer to the ”Debian Emacs Policy“ for details of how to package emacs lisp programs.

The Emacs policy is available in debian-emacs-policy.gz of the
emacsen-common package. It is also available from the Debian web mirrors at
/doc/packaging-manuals/debian-emacs-policy (http://www.debian.org/
doc/packaging-manuals/debian-emacs-policy).

11.11 Games

The permissions on /var/games are mode 755, owner root and group root.

Each game decides on its own security policy.

Games which require protected, privileged access to high-score files, saved games, etc., may
be made set-group-id (mode 2755) and owned by root.games, and use files and directories
with appropriate permissions (770 root.games, for example). They must not be made set-
user-id, as this causes security problems. (If an attacker can subvert any set-user-id game they
can overwrite the executable of any other, causing other players of these games to run a Trojan
horse program. With a set-group-id game the attacker only gets access to less important game
data, and if they can get at the other players’ accounts at all it will take considerably more
effort.)

Some packages, for example some fortune cookie programs, are configured by the upstream
authors to install with their data files or other static information made unreadable so that they

http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy

Chapter 11. Customized programs 103

can only be accessed through set-id programs provided. You should not do this in a Debian
package: anyone can download the .deb file and read the data from it, so there is no point
making the files unreadable. Not making the files unreadable also means that you don’t have
to make so many programs set-id, which reduces the risk of a security hole.

As described in the FHS, binaries of games should be installed in the directory /usr/games.
This also applies to games that use the X Window System. Manual pages for games (X and
non-X games) should be installed in /usr/share/man/man6.

Chapter 11. Customized programs 104

105

Chapter 12

Documentation

12.1 Manual pages

You should install manual pages in nroff source form, in appropriate places under /usr
/share/man. You should only use sections 1 to 9 (see the FHS for more details). You must not
install a pre-formatted ”cat page“.

Each program, utility, and function should have an associated manual page included in the
same package. It is suggested that all configuration files also have a manual page included as
well. Manual pages for protocols and other auxiliary things are optional.

If no manual page is available, this is considered as a bug and should be reported to the De-
bian Bug Tracking System (the maintainer of the package is allowed to write this bug report
themselves, if they so desire). Do not close the bug report until a proper man page is available.1

You may forward a complaint about a missing man page to the upstream authors, and mark
the bug as forwarded in the Debian bug tracking system. Even though the GNU Project do not
in general consider the lack of a man page to be a bug, we do; if they tell you that they don’t
consider it a bug you should leave the bug in our bug tracking system open anyway.

Manual pages should be installed compressed using gzip -9.

If one man page needs to be accessible via several names it is better to use a symbolic link than
the .so feature, but there is no need to fiddle with the relevant parts of the upstream source
to change from .so to symlinks: don’t do it unless it’s easy. You should not create hard links
in the manual page directories, nor put absolute filenames in .so directives. The filename in
a .so in a man page should be relative to the base of the man page tree (usually /usr/share
/man). If you do not create any links (whether symlinks, hard links, or .so directives) in the
file system to the alternate names of the man page, then you should not rely on man finding
your man page under those names based solely on the information in the man page’s header.2

1It is not very hard to write a man page. See the Man-Page-HOWTO (http://www.schweikhardt.
net/man_page_howto.html), man(7), the examples created by debmake or dh_make, the helper programs
help2man, or the directory /usr/share/doc/man-db/examples.

2Supporting this in man often requires unreasonable processing time to find a manual page or to report that

http://www.schweikhardt.net/man_page_howto.html
http://www.schweikhardt.net/man_page_howto.html

Chapter 12. Documentation 106

Manual pages in locale-specific subdirectories of /usr/share/man should use either UTF-8
or the usual legacy encoding for that language (normally the one corresponding to the shortest
relevant locale name in /usr/share/i18n/SUPPORTED). For example, pages under /usr
/share/man/fr should use either UTF-8 or ISO-8859-1.3

A country name (the DE in de_DE) should not be included in the subdirectory name unless it
indicates a significant difference in the language, as this excludes speakers of the language in
other countries.4

Due to limitations in current implementations, all characters in the manual page source should
be representable in the usual legacy encoding for that language, even if the file is actually
encoded in UTF-8. Safe alternative ways to write many characters outside that range may be
found in groff_char(7).

12.2 Info documents

Info documents should be installed in /usr/share/info. They should be compressed with
gzip -9.

Your package should call install-info to update the Info dir file in its postinst script
when called with a configure argument, for example:

install-info --quiet --section Development Development \
/usr/share/info/foobar.info

It is a good idea to specify a section for the location of your program; this is done with the
--section switch. To determine which section to use, you should look at /usr/share
/info/dir on your system and choose the most relevant (or create a new section if none
of the current sections are relevant). Note that the --section flag takes two arguments; the
first is a regular expression to match (case-insensitively) against an existing section, the second
is used when creating a new one.

You should remove the entries in the prerm script when called with a remove argument:

install-info --quiet --remove /usr/share/info/foobar.info

If install-info cannot find a description entry in the Info file you must supply one. See
install-info(8) for details.

none exists, and moves knowledge into man’s database that would be better left in the file system. This support is
therefore deprecated and will cease to be present in the future.

3man will automatically detect whether UTF-8 is in use. In future, all manual pages will be required to use
UTF-8.

4At the time of writing, Chinese and Portuguese are the main languages with such differences, so pt_BR,
zh_CN, and zh_TW are all allowed.

Chapter 12. Documentation 107

12.3 Additional documentation

Any additional documentation that comes with the package may be installed at the discretion
of the package maintainer. Plain text documentation should be installed in the directory /usr
/share/doc/package, where package is the name of the package, and compressed with gzip
-9 unless it is small.

If a package comes with large amounts of documentation which many users of the package
will not require you should create a separate binary package to contain it, so that it does not
take up disk space on the machines of users who do not need or want it installed.

It is often a good idea to put text information files (READMEs, changelogs, and so forth) that
come with the source package in /usr/share/doc/package in the binary package. How-
ever, you don’t need to install the instructions for building and installing the package, of
course!

Packages must not require the existence of any files in /usr/share/doc/ in order to function
5. Any files that are referenced by programs but are also useful as stand alone documentation
should be installed under /usr/share/package/ with symbolic links from /usr/share
/doc/package.

/usr/share/doc/package may be a symbolic link to another directory in /usr/share
/doc only if the two packages both come from the same source and the first package Depends
on the second.6

Former Debian releases placed all additional documentation in /usr/doc/package. This has
been changed to /usr/share/doc/package, and packages must not put documentation in
the directory /usr/doc/package. 7

12.4 Preferred documentation formats

The unification of Debian documentation is being carried out via HTML.

If your package comes with extensive documentation in a markup format that can be converted
to various other formats you should if possible ship HTML versions in a binary package, in
the directory /usr/share/doc/appropriate-package or its subdirectories.8

Other formats such as PostScript may be provided at the package maintainer’s discretion.

5The system administrator should be able to delete files in /usr/share/doc/ without causing any programs
to break.

6Please note that this does not override the section on changelog files below, so the file /usr/share/package
/changelog.Debian.gz must refer to the changelog for the current version of package in question. In practice,
this means that the sources of the target and the destination of the symlink must be the same (same source package
and version).

7At this phase of the transition, we no longer require a symbolic link in /usr/doc/. At a later point, policy
shall change to make the symbolic links a bug.

8The rationale: The important thing here is that HTML docs should be available in some package, not necessarily
in the main binary package.

Chapter 12. Documentation 108

12.5 Copyright information

Every package must be accompanied by a verbatim copy of its copyright and distribution
license in the file /usr/share/doc/package/copyright. This file must neither be com-
pressed nor be a symbolic link.

In addition, the copyright file must say where the upstream sources (if any) were obtained.
It should name the original authors of the package and the Debian maintainer(s) who were
involved with its creation.

Packages in the contrib or non-free categories should state in the copyright file that the package
is not part of the Debian GNU/Linux distribution and briefly explain why.

A copy of the file which will be installed in /usr/share/doc/package/copyright should
be in debian/copyright in the source package.

/usr/share/doc/package may be a symbolic link to another directory in /usr/share
/doc only if the two packages both come from the same source and the first package Depends
on the second. These rules are important because copyrights must be extractable by mechanical
means.

Packages distributed under the UCB BSD license, the Apache license (version 2.0), the Artis-
tic license, the GNU GPL (version 2 or 3), the GNU LGPL (versions 2, 2.1, or 3), and
the GNU FDL (version 1.2) should refer to the corresponding files under /usr/share
/common-licenses,9 rather than quoting them in the copyright file.

You should not use the copyright file as a general README file. If your package has such a file
it should be installed in /usr/share/doc/package/README or README.Debian or some
other appropriate place.

12.6 Examples

Any examples (configurations, source files, whatever), should be installed in a directory /usr
/share/doc/package/examples. These files should not be referenced by any program:
they’re there for the benefit of the system administrator and users as documentation only.
Architecture-specific example files should be installed in a directory /usr/lib/package
/examples with symbolic links to them from /usr/share/doc/package/examples, or
the latter directory itself may be a symbolic link to the former.

If the purpose of a package is to provide examples, then the example files may be installed into
/usr/share/doc/package.

9In particular, /usr/share/common-licenses/BSD, /usr/share/common-licenses/Apache-2.0,
/usr/share/common-licenses/Artistic, /usr/share/common-licenses/GPL-2, /usr/share
/common-licenses/GPL-3, /usr/share/common-licenses/LGPL-2, /usr/share/common-licenses
/LGPL-2.1, /usr/share/common-licenses/LGPL-3, and /usr/share/common-licenses/GFDL-1.2
respectively.

Chapter 12. Documentation 109

12.7 Changelog files

Packages that are not Debian-native must contain a compressed copy of the debian
/changelog file from the Debian source tree in /usr/share/doc/package with the name
changelog.Debian.gz.

If an upstream changelog is available, it should be accessible as /usr/share/doc/package
/changelog.gz in plain text. If the upstream changelog is distributed in HTML, it should
be made available in that form as /usr/share/doc/package/changelog.html.gz and
a plain text changelog.gz should be generated from it using, for example, lynx -dump
-nolist. If the upstream changelog files do not already conform to this naming convention,
then this may be achieved either by renaming the files, or by adding a symbolic link, at the
maintainer’s discretion.10

All of these files should be installed compressed using gzip -9, as they will become large
with time even if they start out small.

If the package has only one changelog which is used both as the Debian changelog and the
upstream one because there is no separate upstream maintainer then that changelog should
usually be installed as /usr/share/doc/package/changelog.gz; if there is a separate
upstream maintainer, but no upstream changelog, then the Debian changelog should still be
called changelog.Debian.gz.

For details about the format and contents of the Debian changelog file, please see ‘Debian
changelog: debian/changelog’ on page 19.

10Rationale: People should not have to look in places for upstream changelogs merely because they are given
different names or are distributed in HTML format.

Chapter 12. Documentation 110

111

Appendix A

Introduction and scope of these
appendices

These appendices are taken essentially verbatim from the now-deprecated Packaging Manual,
version 3.2.1.0. They are the chapters which are likely to be of use to package maintainers and
which have not already been included in the policy document itself. Most of these sections are
very likely not relevant to policy; they should be treated as documentation for the packaging
system. Please note that these appendices are included for convenience, and for historical
reasons: they used to be part of policy package, and they have not yet been incorporated into
dpkg documentation. However, they still have value, and hence they are presented here.

They have not yet been checked to ensure that they are compatible with the contents of policy,
and if there are any contradictions, the version in the main policy document takes precedence.
The remaining chapters of the old Packaging Manual have also not been read in detail to ensure
that there are not parts which have been left out. Both of these will be done in due course.

Certain parts of the Packaging manual were integrated into the Policy Manual proper, and
removed from the appendices. Links have been placed from the old locations to the new ones.

dpkg is a suite of programs for creating binary package files and installing and removing them
on Unix systems.1

The binary packages are designed for the management of installed executable programs (usu-
ally compiled binaries) and their associated data, though source code examples and documen-
tation are provided as part of some packages.

This manual describes the technical aspects of creating Debian binary packages (.deb files). It
documents the behavior of the package management programs dpkg, dselect et al. and the
way they interact with packages.

It also documents the interaction between dselect’s core and the access method scripts it uses
to actually install the selected packages, and describes how to create a new access method.

This manual does not go into detail about the options and usage of the package building and
installation tools. It should therefore be read in conjunction with those programs’ man pages.

1dpkg is targeted primarily at Debian GNU/Linux, but may work on or be ported to other systems.

Chapter A. Introduction and scope of these appendices 112

The utility programs which are provided with dpkg for managing various system configura-
tion and similar issues, such as update-rc.d and install-info, are not described in detail
here - please see their man pages.

It is assumed that the reader is reasonably familiar with the dpkg System Administrators’
manual. Unfortunately this manual does not yet exist.

The Debian version of the FSF’s GNU hello program is provided as an example for people
wishing to create Debian packages. The Debian debmake package is recommended as a very
helpful tool in creating and maintaining Debian packages. However, while the tools and exam-
ples are helpful, they do not replace the need to read and follow the Policy and Programmer’s
Manual.

113

Appendix B

Binary packages (from old Packaging
Manual)

The binary package has two main sections. The first part consists of various control infor-
mation files and scripts used by dpkg when installing and removing. See ‘Package control
information files’ on the following page.

The second part is an archive containing the files and directories to be installed.

In the future binary packages may also contain other components, such as checksums and
digital signatures. The format for the archive is described in full in the deb(5) man page.

B.1 Creating package files - dpkg-deb

All manipulation of binary package files is done by dpkg-deb; it’s the only program that has
knowledge of the format. (dpkg-deb may be invoked by calling dpkg, as dpkg will spot that
the options requested are appropriate to dpkg-deb and invoke that instead with the same
arguments.)

In order to create a binary package you must make a directory tree which contains all the files
and directories you want to have in the file system data part of the package. In Debian-format
source packages this directory is usually debian/tmp, relative to the top of the package’s
source tree.

They should have the locations (relative to the root of the directory tree you’re constructing)
ownerships and permissions which you want them to have on the system when they are in-
stalled.

With current versions of dpkg the uid/username and gid/groupname mappings for the users
and groups being used should be the same on the system where the package is built and the
one where it is installed.

You need to add one special directory to the root of the miniature file system tree you’re creat-
ing: DEBIAN. It should contain the control information files, notably the binary package control

Chapter B. Binary packages (from old Packaging Manual) 114

file (see ‘The main control information file: control’ on the next page).

The DEBIAN directory will not appear in the file system archive of the package, and so won’t
be installed by dpkg when the package is installed.

When you’ve prepared the package, you should invoke:

dpkg --build directory

This will build the package in directory.deb. (dpkg knows that --build is a dpkg-deb
option, so it invokes dpkg-deb with the same arguments to build the package.)

See the man page dpkg-deb(8) for details of how to examine the contents of this newly-
created file. You may find the output of following commands enlightening:

dpkg-deb --info filename.deb
dpkg-deb --contents filename.deb
dpkg --contents filename.deb

To view the copyright file for a package you could use this command:

dpkg --fsys-tarfile filename.deb | tar xOf - */copyright | pager

B.2 Package control information files

The control information portion of a binary package is a collection of files with names known
to dpkg. It will treat the contents of these files specially - some of them contain information
used by dpkg when installing or removing the package; others are scripts which the package
maintainer wants dpkg to run.

It is possible to put other files in the package control area, but this is not generally a good idea
(though they will largely be ignored).

Here is a brief list of the control info files supported by dpkg and a summary of what they’re
used for.

control This is the key description file used by dpkg. It specifies the package’s name and
version, gives its description for the user, states its relationships with other packages, and
so forth. See ‘Source package control files – debian/control’ on page 30 and ‘Binary
package control files – DEBIAN/control’ on page 31.

It is usually generated automatically from information in the source package by the
dpkg-gencontrol program, and with assistance from dpkg-shlibdeps. See ‘Tools
for processing source packages’ on page 117.

Chapter B. Binary packages (from old Packaging Manual) 115

postinst, preinst, postrm, prerm These are executable files (usually scripts) which dpkg
runs during installation, upgrade and removal of packages. They allow the package
to deal with matters which are particular to that package or require more complicated
processing than that provided by dpkg. Details of when and how they are called are in
‘Package maintainer scripts and installation procedure’ on page 43.

It is very important to make these scripts idempotent. See ‘Maintainer scripts idempo-
tency’ on page 44.

The maintainer scripts are guaranteed to run with a controlling terminal and can interact
with the user. See ‘Controlling terminal for maintainer scripts’ on page 44.

conffiles This file contains a list of configuration files which are to be handled auto-
matically by dpkg (see ‘Configuration file handling (from old Packaging Manual)’ on
page 127). Note that not necessarily every configuration file should be listed here.

shlibs This file contains a list of the shared libraries supplied by the package, with depen-
dency details for each. This is used by dpkg-shlibdeps when it determines what de-
pendencies are required in a package control file. The shlibs file format is described on
‘The shlibs File Format’ on page 64.

B.3 The main control information file: control

The most important control information file used by dpkg when it installs a package is
control. It contains all the package’s ”vital statistics“.

The binary package control files of packages built from Debian sources are made by a special
tool, dpkg-gencontrol, which reads debian/control and debian/changelog to find
the information it needs. See ‘Source packages (from old Packaging Manual)’ on page 117 for
more details.

The fields in binary package control files are listed in ‘Binary package control files – DEBIAN
/control’ on page 31.

A description of the syntax of control files and the purpose of the fields is available in ‘Control
files and their fields’ on page 29.

B.4 Time Stamps

See ‘Time Stamps’ on page 21.

Chapter B. Binary packages (from old Packaging Manual) 116

117

Appendix C

Source packages (from old Packaging
Manual)

The Debian binary packages in the distribution are generated from Debian sources, which are
in a special format to assist the easy and automatic building of binaries.

C.1 Tools for processing source packages

Various tools are provided for manipulating source packages; they pack and unpack sources
and help build of binary packages and help manage the distribution of new versions.

They are introduced and typical uses described here; see dpkg-source(1) for full documen-
tation about their arguments and operation.

For examples of how to construct a Debian source package, and how to use those utilities that
are used by Debian source packages, please see the hello example package.

C.1.1 dpkg-source - packs and unpacks Debian source packages

This program is frequently used by hand, and is also called from package-independent auto-
mated building scripts such as dpkg-buildpackage.

To unpack a package it is typically invoked with

dpkg-source -x .../path/to/filename.dsc

with the filename.tar.gz and filename.diff.gz (if applicable) in the same directory. It
unpacks into package-version, and if applicable package-version.orig, in the current
directory.

To create a packed source archive it is typically invoked:

Chapter C. Source packages (from old Packaging Manual) 118

dpkg-source -b package-version

This will create the .dsc, .tar.gz and .diff.gz (if appropriate) in the current directory.
dpkg-source does not clean the source tree first - this must be done separately if it is required.

See also ‘Source packages as archives’ on page 123.

C.1.2 dpkg-buildpackage - overall package-building control script

dpkg-buildpackage is a script which invokes dpkg-source, the debian/rules targets
clean, build and binary, dpkg-genchanges and gpg (or pgp) to build a signed source
and binary package upload.

It is usually invoked by hand from the top level of the built or unbuilt source directory. It may
be invoked with no arguments; useful arguments include:
-uc, -us Do not sign the .changes file or the source package .dsc file, respectively.
-psign-command Invoke sign-command instead of finding gpg or pgp on the PATH. sign-

command must behave just like gpg or pgp.
-rroot-command When root privilege is required, invoke the command root-command. root-

command should invoke its first argument as a command, from the PATH if necessary, and
pass its second and subsequent arguments to the command it calls. If no root-command is
supplied then dpkg-buildpackage will take no special action to gain root privilege, so that
for most packages it will have to be invoked as root to start with.

-b, -B Two types of binary-only build and upload - see dpkg-source(1).

C.1.3 dpkg-gencontrol - generates binary package control files

This program is usually called from debian/rules (see ‘The Debianised source tree’ on
page 120) in the top level of the source tree.

This is usually done just before the files and directories in the temporary directory tree where
the package is being built have their permissions and ownerships set and the package is con-
structed using dpkg-deb/ 1.

dpkg-gencontrol must be called after all the files which are to go into the package have
been placed in the temporary build directory, so that its calculation of the installed size of a
package is correct.

It is also necessary for dpkg-gencontrol to be run after dpkg-shlibdeps so that the vari-
able substitutions created by dpkg-shlibdeps in debian/substvars are available.

For a package which generates only one binary package, and which builds it in debian/tmp
relative to the top of the source package, it is usually sufficient to call dpkg-gencontrol.

Sources which build several binaries will typically need something like:

1This is so that the control file which is produced has the right permissions

Chapter C. Source packages (from old Packaging Manual) 119

dpkg-gencontrol -Pdebian/tmp-pkg -ppackage

The -P tells dpkg-gencontrol that the package is being built in a non-default directory, and
the -p tells it which package’s control file should be generated.

dpkg-gencontrol also adds information to the list of files in debian/files, for the benefit
of (for example) a future invocation of dpkg-genchanges.

C.1.4 dpkg-shlibdeps - calculates shared library dependencies

This program is usually called from debian/rules just before dpkg-gencontrol (see ‘The
Debianised source tree’ on the following page), in the top level of the source tree.

Its arguments are executables and shared libraries 2 for which shared library dependencies
should be included in the binary package’s control file.

If some of the found shared libraries should only warrant a Recommends or Suggests, or
if some warrant a Pre-Depends, this can be achieved by using the -ddependency-field
option before those executable(s). (Each -d option takes effect until the next -d.)

dpkg-shlibdeps does not directly cause the output control file to be modified. Instead
by default it adds to the debian/substvars file variable settings like shlibs:Depends.
These variable settings must be referenced in dependency fields in the appropriate per-binary-
package sections of the source control file.

For example, a package that generates an essential part which requires dependencies, and
optional parts that which only require a recommendation, would separate those two sets of
dependencies into two different fields.3 It can say in its debian/rules:

dpkg-shlibdeps -dDepends program anotherprogram ... \
-dRecommends optionalpart anotheroptionalpart

and then in its main control file debian/control:

...
Depends: ${shlibs:Depends}
Recommends: ${shlibs:Recommends}
...

Sources which produce several binary packages with different shared library dependency re-
quirements can use the -pvarnameprefix option to override the default shlibs: prefix
(one invocation of dpkg-shlibdeps per setting of this option). They can thus produce sev-
eral sets of dependency variables, each of the form varnameprefix:dependencyfield,
which can be referred to in the appropriate parts of the binary package control files.

2They may be specified either in the locations in the source tree where they are created or in the locations in the
temporary build tree where they are installed prior to binary package creation.

3At the time of writing, an example for this was the xmms package, with Depends used for the xmms executable,
Recommends for the plug-ins and Suggests for even more optional features provided by unzip.

Chapter C. Source packages (from old Packaging Manual) 120

C.1.5 dpkg-distaddfile - adds a file to debian/files

Some packages’ uploads need to include files other than the source and binary package files.

dpkg-distaddfile adds a file to the debian/files file so that it will be included in the
.changes file when dpkg-genchanges is run.

It is usually invoked from the binary target of debian/rules:

dpkg-distaddfile filename section priority

The filename is relative to the directory where dpkg-genchanges will expect to find it - this is
usually the directory above the top level of the source tree. The debian/rules target should
put the file there just before or just after calling dpkg-distaddfile.

The section and priority are passed unchanged into the resulting .changes file.

C.1.6 dpkg-genchanges - generates a .changes upload control file

This program is usually called by package-independent automatic building scripts such as
dpkg-buildpackage, but it may also be called by hand.

It is usually called in the top level of a built source tree, and when invoked with no arguments
will print out a straightforward .changes file based on the information in the source pack-
age’s changelog and control file and the binary and source packages which should have been
built.

C.1.7 dpkg-parsechangelog - produces parsed representation of a changelog

This program is used internally by dpkg-source et al. It may also occasionally be useful in
debian/rules and elsewhere. It parses a changelog, debian/changelog by default, and
prints a control-file format representation of the information in it to standard output.

C.1.8 dpkg-architecture - information about the build and host system

This program can be used manually, but is also invoked by dpkg-buildpackage or debian
/rules to set environment or make variables which specify the build and host architecture
for the package building process.

C.2 The Debianised source tree

The source archive scheme described later is intended to allow a Debianised source tree with
some associated control information to be reproduced and transported easily. The Debianised

Chapter C. Source packages (from old Packaging Manual) 121

source tree is a version of the original program with certain files added for the benefit of the
Debianisation process, and with any other changes required made to the rest of the source code
and installation scripts.

The extra files created for Debian are in the subdirectory debian of the top level of the De-
bianised source tree. They are described below.

C.2.1 debian/rules - the main building script

See ‘Main building script: debian/rules’ on page 21.

C.2.2 debian/changelog

See ‘Debian changelog: debian/changelog’ on page 19.

It is recommended that the entire changelog be encoded in the UTF-8 (http://www.cis.
ohio-state.edu/cgi-bin/rfc/rfc2279.html) encoding of Unicode (http://www.
unicode.org/).4

Defining alternative changelog formats

It is possible to use a different format to the standard one, by providing a parser for the format
you wish to use.

In order to have dpkg-parsechangelog run your parser, you must include a
line within the last 40 lines of your file matching the Perl regular expression:
\schangelog-format:\s+([0-9a-z]+)\W The part in parentheses should be the name
of the format. For example, you might say:

@@@ changelog-format: joebloggs @@@

Changelog format names are non-empty strings of alphanumerics.

If such a line exists then dpkg-parsechangelog will look for the parser as /usr/lib
/dpkg/parsechangelog/format-name or /usr/local/lib/dpkg/parsechangelog
/format-name; it is an error for it not to find it, or for it not to be an executable program.
The default changelog format is dpkg, and a parser for it is provided with the dpkg package.

4I think it is fairly obvious that we need to eventually transition to UTF-8 for our package infrastructure; it is
really the only sane char-set in an international environment. Now, we can’t switch to using UTF-8 for package
control fields and the like until dpkg has better support, but one thing we can start doing today is requesting that
Debian changelogs are UTF-8 encoded. At some point in time, we can start requiring them to do so. Checking for
non-UTF8 characters in a changelog is trivial. Dump the file through

iconv -f utf-8 -t ucs-4

discard the output, and check the return value. If there are any characters in the stream which are invalid UTF-8
sequences, iconv will exit with an error code; and this will be the case for the vast majority of other character sets.

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2279.html
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2279.html
http://www.unicode.org/
http://www.unicode.org/

Chapter C. Source packages (from old Packaging Manual) 122

The parser will be invoked with the changelog open on standard input at the start of the file.
It should read the file (it may seek if it wishes) to determine the information required and
return the parsed information to standard output in the form of a series of control fields in the
standard format. By default it should return information about only the most recent version
in the changelog; it should accept a -vversion option to return changes information from all
versions present strictly after version, and it should then be an error for version not to be present
in the changelog.

The fields are:
• Source
• Version (mandatory)
• Distribution (mandatory)
• Urgency (mandatory)
• Maintainer (mandatory)
• Date
• Changes (mandatory)

If several versions are being returned (due to the use of -v), the urgency value should be
of the highest urgency code listed at the start of any of the versions requested followed by
the concatenated (space-separated) comments from all the versions requested; the maintainer,
version, distribution and date should always be from the most recent version.

For the format of the Changes field see ‘Changes’ on page 39.

If the changelog format which is being parsed always or almost always leaves a blank line
between individual change notes these blank lines should be stripped out, so as to make the
resulting output compact.

If the changelog format does not contain date or package name information this information
should be omitted from the output. The parser should not attempt to synthesize it or find it
from other sources.

If the changelog does not have the expected format the parser should exit with a nonzero exit
status, rather than trying to muddle through and possibly generating incorrect output.

A changelog parser may not interact with the user at all.

C.2.3 debian/substvars and variable substitutions

See ‘Variable substitutions: debian/substvars’ on page 25.

C.2.4 debian/files

See ‘Generated files list: debian/files’ on page 26.

Chapter C. Source packages (from old Packaging Manual) 123

C.2.5 debian/tmp

This is the canonical temporary location for the construction of binary packages by the binary
target. The directory tmp serves as the root of the file system tree as it is being constructed (for
example, by using the package’s upstream makefiles install targets and redirecting the output
there), and it also contains the DEBIAN subdirectory. See ‘Creating package files - dpkg-deb’
on page 113.

If several binary packages are generated from the same source tree it is usual to use several
debian/tmpsomething directories, for example tmp-a or tmp-doc.

Whatever tmp directories are created and used by binary must of course be removed by the
clean target.

C.3 Source packages as archives

As it exists on the FTP site, a Debian source package consists of three related files. You must
have the right versions of all three to be able to use them.

Debian source control file - .dsc This file is a control file used by dpkg-source to extract a
source package. See ‘Debian source control files – .dsc’ on page 31.

Original source archive - package_upstream-version.orig.tar.gz This is a com-
pressed (with gzip -9) tar file containing the source code from the upstream authors
of the program.

Debianisation diff - package_upstream_version-revision.diff.gz This is a unified
context diff (diff -u) giving the changes which are required to turn the original source
into the Debian source. These changes may only include editing and creating plain files.
The permissions of files, the targets of symbolic links and the characteristics of special
files or pipes may not be changed and no files may be removed or renamed.

All the directories in the diff must exist, except the debian subdirectory of the top of the
source tree, which will be created by dpkg-source if necessary when unpacking.

The dpkg-source program will automatically make the debian/rules file executable
(see below).

If there is no original source code - for example, if the package is specially prepared for Debian
or the Debian maintainer is the same as the upstream maintainer - the format is slightly differ-
ent: then there is no diff, and the tarfile is named package_version.tar.gz, and preferably
contains a directory named package-version.

C.4 Unpacking a Debian source package without dpkg-source

dpkg-source -x is the recommended way to unpack a Debian source package. However, if
it is not available it is possible to unpack a Debian source archive as follows:

Chapter C. Source packages (from old Packaging Manual) 124

1 Untar the tarfile, which will create a .orig directory.
2 Rename the .orig directory to package-version.
3 Create the subdirectory debian at the top of the source tree.
4 Apply the diff using patch -p0.
5 Untar the tarfile again if you want a copy of the original source code alongside the De-

bianised version.

It is not possible to generate a valid Debian source archive without using dpkg-source. In
particular, attempting to use diff directly to generate the .diff.gz file will not work.

C.4.1 Restrictions on objects in source packages

The source package may not contain any hard links 5 6, device special files, sockets or setuid
or setgid files. 7

The source packaging tools manage the changes between the original and Debianised source
using diff and patch. Turning the original source tree as included in the .orig.tar.gz
into the debianised source must not involve any changes which cannot be handled by these
tools. Problematic changes which cause dpkg-source to halt with an error when building
the source package are:

• Adding or removing symbolic links, sockets or pipes.
• Changing the targets of symbolic links.
• Creating directories, other than debian.
• Changes to the contents of binary files.

Changes which cause dpkg-source to print a warning but continue anyway are:
• Removing files, directories or symlinks. 8

• Changed text files which are missing the usual final newline (either in the original or the
modified source tree).

Changes which are not represented, but which are not detected by dpkg-source, are:
• Changing the permissions of files (other than debian/rules) and directories.

The debian directory and debian/rules are handled specially by dpkg-source - before
applying the changes it will create the debian directory, and afterwards it will make debian
/rules world-executable.

5This is not currently detected when building source packages, but only when extracting them.
6Hard links may be permitted at some point in the future, but would require a fair amount of work.
7Setgid directories are allowed.
8Renaming a file is not treated specially - it is seen as the removal of the old file (which generates a warning,

but is otherwise ignored), and the creation of the new one.

125

Appendix D

Control files and their fields (from old
Packaging Manual)

Many of the tools in the dpkg suite manipulate data in a common format, known as control
files. Binary and source packages have control data as do the .changes files which control
the installation of uploaded files, and dpkg’s internal databases are in a similar format.

D.1 Syntax of control files

See ‘Syntax of control files’ on page 29.

It is important to note that there are several fields which are optional as far as dpkg and the re-
lated tools are concerned, but which must appear in every Debian package, or whose omission
may cause problems.

D.2 List of fields

See ‘List of fields’ on page 32.

This section now contains only the fields that didn’t belong to the Policy manual.

D.2.1 Filename and MSDOS-Filename

These fields in Packages files give the filename(s) of (the parts of) a package in the distribution
directories, relative to the root of the Debian hierarchy. If the package has been split into several
parts the parts are all listed in order, separated by spaces.

Chapter D. Control files and their fields (from old Packaging Manual) 126

D.2.2 Size and MD5sum

These fields in Packages files give the size (in bytes, expressed in decimal) and MD5 check-
sum of the file(s) which make(s) up a binary package in the distribution. If the package is split
into several parts the values for the parts are listed in order, separated by spaces.

D.2.3 Status

This field in dpkg’s status file records whether the user wants a package installed, removed or
left alone, whether it is broken (requiring re-installation) or not and what its current state on
the system is. Each of these pieces of information is a single word.

D.2.4 Config-Version

If a package is not installed or not configured, this field in dpkg’s status file records the last
version of the package which was successfully configured.

D.2.5 Conffiles

This field in dpkg’s status file contains information about the automatically-managed config-
uration files held by a package. This field should not appear anywhere in a package!

D.2.6 Obsolete fields

These are still recognized by dpkg but should not appear anywhere any more.
Revision
Package-Revision
Package_Revision The Debian revision part of the package version was at one point in a

separate control file field. This field went through several names.
Recommended Old name for Recommends.
Optional Old name for Suggests.
Class Old name for Priority.

127

Appendix E

Configuration file handling (from old
Packaging Manual)

dpkg can do a certain amount of automatic handling of package configuration files.

Whether this mechanism is appropriate depends on a number of factors, but basically there
are two approaches to any particular configuration file.

The easy method is to ship a best-effort configuration in the package, and use dpkg’s conffile
mechanism to handle updates. If the user is unlikely to want to edit the file, but you need them
to be able to without losing their changes, and a new package with a changed version of the
file is only released infrequently, this is a good approach.

The hard method is to build the configuration file from scratch in the postinst script, and
to take the responsibility for fixing any mistakes made in earlier versions of the package auto-
matically. This will be appropriate if the file is likely to need to be different on each system.

E.1 Automatic handling of configuration files by dpkg

A package may contain a control area file called conffiles. This file should be a list of
filenames of configuration files needing automatic handling, separated by newlines. The file-
names should be absolute pathnames, and the files referred to should actually exist in the
package.

When a package is upgraded dpkgwill process the configuration files during the configuration
stage, shortly before it runs the package’s postinst script,

For each file it checks to see whether the version of the file included in the package is the same
as the one that was included in the last version of the package (the one that is being upgraded
from); it also compares the version currently installed on the system with the one shipped with
the last version.

If neither the user nor the package maintainer has changed the file, it is left alone. If one or the
other has changed their version, then the changed version is preferred - i.e., if the user edits

Chapter E. Configuration file handling (from old Packaging Manual) 128

their file, but the package maintainer doesn’t ship a different version, the user’s changes will
stay, silently, but if the maintainer ships a new version and the user hasn’t edited it the new
version will be installed (with an informative message). If both have changed their version the
user is prompted about the problem and must resolve the differences themselves.

The comparisons are done by calculating the MD5 message digests of the files, and storing the
MD5 of the file as it was included in the most recent version of the package.

When a package is installed for the first time dpkg will install the file that comes with it, unless
that would mean overwriting a file already on the file system.

However, note that dpkg will not replace a conffile that was removed by the user (or by a
script). This is necessary because with some programs a missing file produces an effect hard
or impossible to achieve in another way, so that a missing file needs to be kept that way if the
user did it.

Note that a package should not modify a dpkg-handled conffile in its maintainer scripts. Doing
this will lead to dpkg giving the user confusing and possibly dangerous options for conffile
update when the package is upgraded.

E.2 Fully-featured maintainer script configuration handling

For files which contain site-specific information such as the hostname and networking details
and so forth, it is better to create the file in the package’s postinst script.

This will typically involve examining the state of the rest of the system to determine values
and other information, and may involve prompting the user for some information which can’t
be obtained some other way.

When using this method there are a couple of important issues which should be considered:

If you discover a bug in the program which generates the configuration file, or if the format of
the file changes from one version to the next, you will have to arrange for the postinst script to
do something sensible - usually this will mean editing the installed configuration file to remove
the problem or change the syntax. You will have to do this very carefully, since the user may
have changed the file, perhaps to fix the very problem that your script is trying to deal with -
you will have to detect these situations and deal with them correctly.

If you do go down this route it’s probably a good idea to make the program that generates the
configuration file(s) a separate program in /usr/sbin, by convention called packageconfig
and then run that if appropriate from the post-installation script. The packageconfig pro-
gram should not unquestioningly overwrite an existing configuration - if its mode of operation
is geared towards setting up a package for the first time (rather than any arbitrary reconfigu-
ration later) you should have it check whether the configuration already exists, and require a
--force flag to overwrite it.

129

Appendix F

Alternative versions of an interface -
update-alternatives (from old
Packaging Manual)

When several packages all provide different versions of the same program or file it is useful to
have the system select a default, but to allow the system administrator to change it and have
their decisions respected.

For example, there are several versions of the vi editor, and there is no reason to prevent all
of them from being installed at once, each under their own name (nvi, vim or whatever).
Nevertheless it is desirable to have the name vi refer to something, at least by default.

If all the packages involved cooperate, this can be done with update-alternatives.

Each package provides its own version under its own name, and calls
update-alternatives in its postinst to register its version (and again in its prerm to
deregister it).

See the man page update-alternatives(8) for details.

If update-alternatives does not seem appropriate you may wish to consider using diver-
sions instead.

Chapter F. Alternative versions of an interface - update-alternatives (from old
Packaging Manual) 130

131

Appendix G

Diversions - overriding a package’s
version of a file (from old Packaging
Manual)

It is possible to have dpkg not overwrite a file when it reinstalls the package it belongs to, and
to have it put the file from the package somewhere else instead.

This can be used locally to override a package’s version of a file, or by one package to override
another’s version (or provide a wrapper for it).

Before deciding to use a diversion, read ‘Alternative versions of an interface -
update-alternatives (from old Packaging Manual)’ on page 129 to see if you really want
a diversion rather than several alternative versions of a program.

There is a diversion list, which is read by dpkg, and updated by a special program
dpkg-divert. Please see dpkg-divert(8) for full details of its operation.

When a package wishes to divert a file from another, it should call dpkg-divert in its
preinst to add the diversion and rename the existing file. For example, supposing that a
smailwrapper package wishes to install a wrapper around /usr/sbin/smail:

if [install = "$1"]; then
dpkg-divert --package smailwrapper --add --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail
fi

Testing $1 is necessary so that the script doesn’t try to add the diversion again
when smailwrapper is upgraded. The --package smailwrapper ensures that
smailwrapper’s copy of /usr/sbin/smail can bypass the diversion and get installed as
the true version.

The postrm has to do the reverse:

Chapter G. Diversions - overriding a package’s version of a file (from old Packaging Manual)132

if [remove = "$1"]; then
dpkg-divert --package smailwrapper --remove --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail
fi

Do not attempt to divert a file which is vitally important for the system’s operation - when
using dpkg-divert there is a time, after it has been diverted but before dpkg has installed
the new version, when the file does not exist.

	About this manual
	Scope
	New versions of this document
	Authors and Maintainers
	Related documents

	The Debian Archive
	The Debian Free Software Guidelines
	Categories
	The main category
	The contrib category
	The non-free category

	Copyright considerations
	Sections
	Priorities

	Binary packages
	The package name
	The version of a package
	Version numbers based on dates

	The maintainer of a package
	The description of a package
	The single line synopsis
	The extended description

	Dependencies
	Virtual packages
	Base system
	Essential packages
	Maintainer Scripts
	Prompting in maintainer scripts

	Source packages
	Standards conformance
	Package relationships
	Changes to the upstream sources
	Debian changelog: =1spdebian /changelog
	Alternative changelog formats

	Copyright: =1spdebian /copyright
	Error trapping in makefiles
	Time Stamps
	Restrictions on objects in source packages
	Main building script: =1spdebian /rules
	=1spdebian /rules and DEB_BUILD_OPTIONS

	Variable substitutions: =1spdebian /substvars
	Optional upstream source location: =1spdebian /watch
	Generated files list: =1spdebian /files
	Convenience copies of code
	Source package handling: =1spdebian /README.source

	Control files and their fields
	Syntax of control files
	Source package control files -- =1spdebian /control
	Binary package control files -- =1spDEBIAN /control
	Debian source control files -- .dsc
	Debian changes files -- =1sp.changes
	List of fields
	Source
	Maintainer
	Uploaders
	Changed-By
	Section
	Priority
	Package
	Architecture
	Essential
	Package interrelationship fields: Depends, Pre-Depends, Recommends, Suggests, Breaks, Conflicts, Provides, Replaces, Enhances
	Standards-Version
	Version
	Description
	Distribution
	Date
	Format
	Urgency
	Changes
	Binary
	Installed-Size
	Files
	Closes
	Homepage

	User-defined fields

	Package maintainer scripts and installation procedure
	Introduction to package maintainer scripts
	Maintainer scripts idempotency
	Controlling terminal for maintainer scripts
	Exit status
	Summary of ways maintainer scripts are called
	Details of unpack phase of installation or upgrade
	Details of configuration
	Details of removal and/or configuration purging

	Declaring relationships between packages
	Syntax of relationship fields
	Binary Dependencies - Depends, Recommends, Suggests, Enhances, Pre-Depends
	Packages which break other packages - Breaks
	Conflicting binary packages - Conflicts
	Virtual packages - Provides
	Overwriting files and replacing packages - Replaces
	Overwriting files in other packages
	Replacing whole packages, forcing their removal

	Relationships between source and binary packages - Build-Depends, Build-Depends-Indep, Build-Conflicts, Build-Conflicts-Indep

	Shared libraries
	Run-time shared libraries
	ldconfig

	Shared library support files
	Static libraries
	Development files
	Dependencies between the packages of the same library
	Dependencies between the library and other packages - the shlibs system
	The shlibs files present on the system
	How to use dpkg-shlibdeps and the =1spshlibs files
	The =1spshlibs File Format
	Providing a =1spshlibs file
	Writing the =1spdebian /shlibs.local file

	The Operating System
	File system hierarchy
	File system Structure
	Site-specific programs
	The system-wide mail directory

	Users and groups
	Introduction
	UID and GID classes

	System run levels and =1spinit.d scripts
	Introduction
	Writing the scripts
	Interfacing with the initscript system
	Boot-time initialization
	Example

	Console messages from =1spinit.d scripts
	Cron jobs
	Menus
	Multimedia handlers
	Keyboard configuration
	Environment variables
	Registering Documents using doc-base

	Files
	Binaries
	Libraries
	Shared libraries
	Scripts
	Symbolic links
	Device files
	Configuration files
	Definitions
	Location
	Behavior
	Sharing configuration files
	User configuration files (''dotfiles``)

	Log files
	Permissions and owners
	The use of dpkg-statoverride

	Customized programs
	Architecture specification strings
	Daemons
	Using pseudo-ttys and modifying wtmp, utmp and lastlog
	Editors and pagers
	Web servers and applications
	Mail transport, delivery and user agents
	News system configuration
	Programs for the X Window System
	Providing X support and package priorities
	Packages providing an X server
	Packages providing a terminal emulator
	Packages providing a window manager
	Packages providing fonts
	Application defaults files
	Installation directory issues
	The OSF/Motif and OpenMotif libraries

	Perl programs and modules
	Emacs lisp programs
	Games

	Documentation
	Manual pages
	Info documents
	Additional documentation
	Preferred documentation formats
	Copyright information
	Examples
	Changelog files

	Introduction and scope of these appendices
	Binary packages (from old Packaging Manual)
	Creating package files - dpkg-deb
	Package control information files
	The main control information file: control
	Time Stamps

	Source packages (from old Packaging Manual)
	Tools for processing source packages
	dpkg-source - packs and unpacks Debian source packages
	dpkg-buildpackage - overall package-building control script
	dpkg-gencontrol - generates binary package control files
	dpkg-shlibdeps - calculates shared library dependencies
	dpkg-distaddfile - adds a file to =1spdebian /files
	dpkg-genchanges - generates a =1sp.changes upload control file
	dpkg-parsechangelog - produces parsed representation of a changelog
	dpkg-architecture - information about the build and host system

	The Debianised source tree
	=1spdebian /rules - the main building script
	=1spdebian /changelog
	=1spdebian /substvars and variable substitutions
	=1spdebian /files
	=1spdebian /tmp

	Source packages as archives
	Unpacking a Debian source package without dpkg-source
	Restrictions on objects in source packages

	Control files and their fields (from old Packaging Manual)
	Syntax of control files
	List of fields
	Filename and MSDOS-Filename
	Size and MD5sum
	Status
	Config-Version
	Conffiles
	Obsolete fields

	Configuration file handling (from old Packaging Manual)
	Automatic handling of configuration files by dpkg
	Fully-featured maintainer script configuration handling

	Alternative versions of an interface - update-alternatives (from old Packaging Manual)
	Diversions - overriding a package's version of a file (from old Packaging Manual)

