
KVM: Setting up a network bridge in the host
If you are planning to only access the guest from the KVM host and to access the outside network from the
guests, the default networking set up will be sufficient for you, and you can skip this step and go to the next
section. If the KVM guests need full network access (to and from an external host), one of the options is to set
up a Linux bridge in the host. Note that the Linux bridge configuration does not work in a wireless host
environment.

About this task
You should set up this Linux bridge before the guest OS installation so that the bridge is available for selection
during the guest operating system installation. Bridged networking allows you to link two Ethernet network
segments using packet forwarding technology. More information about Linux bridges can be found at
http://en.wikipedia.org/wiki/Network_bridge.

Note: Be careful when you configure the bridge. If you are accessing the host machine using the same network
card you are configuring for the bridge, any discrepancy might cause you to lose your network connection.

Before setting up this bridge, make sure that the network card that you want to use for the bridge is providing
the network connection you want for your KVM modules and is working. This card should be setup to provide
the same networking capability you want your guest KVM to have.

In the following example, eth0 is the network card used. This card has already been configured for external
access.

ifconfig
eth0 Link encap:Ethernet HWaddr 00:14:5E:C2:1E:40
 inet addr:10.10.1.152 Bcast:10.10.1.255 Mask:255.255.255.0
 inet6 addr: fe80::214:5eff:fec2:1e40/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:664 errors:0 dropped:526 overruns:0 frame:0
 TX packets:163 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:69635 (68.0 KiB) TX bytes:25091 (24.5 KiB)
 Interrupt:74 Memory:da000000-da012800
................

If your network card is not set up yet, create its network script and save it in the /etc/sysconfig/network-
scripts/ directory with help from this site: http://www.redhat.com/docs/manuals/enterprise/RHEL-5-
manual/Deployment_Guide-en-US/s2-networkscripts-interfaces-eth0.html or the libvirt wiki page about writing
network scripts at http://wiki.libvirt.org/page/Networking.

Follow these steps to create a public bridge in the host system.

Procedure
1. Back up the corresponding network script file at a different location. Note that this is important because

you will need to refer back to the file and also for network recovery. Issue the following command to
back up the network script for ifcfg-eth0 to the /root directory:

cp /etc/sysconfig/network-scripts/ifcfg-eth0 /root/.

Note: Do not copy this file to the same network script directory or any of its subdirectories.

2. Create another copy of the network script for defining a Linux® bridge associated with the network card
to a new file called /etc/sysconfig/network-scripts/ifcfg-br0, where br0 is the name of the bridge. The
complete content of the Linux bridge's configuration file will be based on what is already in the working
script of your network card.

cd /etc/sysconfig/network-scripts/

http://en.wikipedia.org/wiki/Network_bridge
http://wiki.libvirt.org/page/Networking
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/s2-networkscripts-interfaces-eth0.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/s2-networkscripts-interfaces-eth0.html

cp ifcfg-eth0 ifcfg-br0

Note: The name of the bridge is arbitrary and you can name it differently as long as you use the same
name in the next step inside the network card's script file.

3. Edit both script files to ensure that the network environment remains the same except that now the
packets will go through the bridge. Your network card most likely is configured with a static IP address
(BOOTPROTO=static) or is configured to get an IP address from a DHCP server
(BOOTPROTO=dhcp).

• If your network card is configured with static IP address, your original network script file should
look similar to this example:

DEVICE=eth0
BOOTPROTO=static
HWADDR=00:14:5E:C2:1E:40
IPADDR=10.10.1.152
NETMASK=255.255.255.0
ONBOOT=yes

The following table shows the contents of the two network configuration scripts after editing was
completed. Edit your scripts accordingly.

Table 1. Bridging network files comparison

/etc/sysconfig/network-scripts/ifcfg-eth0 etc/sysconfig/network-scripts/ifcfg-br0

DEVICE=eth0
TYPE=Ethernet
HWADDR=00:14:5E:C2:1E:40
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br0

DEVICE=br0
TYPE=Bridge
NM_CONTROLLED=no
BOOTPROTO=static
IPADDR=10.10.1.152
NETMASK=255.255.255.0
ONBOOT=yes

In the left column is the network script file for network card (eth0). Note that all the information
directly about this network card stays the same, such as the DEVICE (device name), TYPE
(device type), HWADDR (hardware address), and ONBOOT (whether the device will be activated
on boot). The NM_CONTROLLED=no option was added because both device should not be
controlled by the Network Manager for bridge to work. BRIDGE=br0 is also added to associate
this card with the bridge.

In the right column is the network script for the bridge (br0). Note that all information directly
related to this bridge is there, such as DEVICE (device name), TYPE (device type, Bridge is
case-sensitive and must be added exactly as represented here with an upper case 'B' and lower
case 'ridge'), and the NM_CONTROLLED=no option to disable Network Manager control to
this device. The rest are retained from the network card configuration file (BOOTPROTO,
IPADDR, NETMASK, and ONBOOT). Note that there should not be a hardware address in this
file. These values set up the bridge to behave like the network card: the ifcfg-br0 file acting as
an extension of the ifcfg-eth0 file where the BRIDGE=br0 is pointing to the ifcfg-br0 file.

• If your network card is configured with dynamic IP address, your original network script file
should look similar to this example:

DEVICE=eth0
BOOTPROTO=dhcp
HWADDR=00:14:5E:C2:1E:40
ONBOOT=yes

The following table shows the contents of the two network configuration scripts after editing was
completed. Edit your scripts accordingly.

Table 2. Bridging network files comparison

/etc/sysconfig/network-scripts/ifcfg-eth0 /etc/sysconfig/network-scripts/ifcfg-br0

DEVICE=eth0
TYPE=Ethernet
HWADDR=00:14:5E:C2:1E:40
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br0

DEVICE=br0
TYPE=Bridge
NM_CONTROLLED=no
BOOTPROTO=dhcp
ONBOOT=yes

In the left column is the network script file for network card (eth0), which looks exactly like the
one in the static IP address scenario. Note that all the information directly about this network
card stays the same, such as the DEVICE (device name), TYPE (device type, Bridge is case-
sensitive and must be added exactly as represented here with an upper case 'B' and lower case
'ridge'.), HWADDR (hardware address), and ONBOOT (whether the device will be activated on
boot). The NM_CONTROLLED=no option was added because both device should not be
controlled by the Network Manager for the bridge to work. BRIDGE=br0 is also added to
associate this card with the bridge.

In the right column is the network script for the bridge (br0). Note that similar all information
directly related to this bridge is there, such as DEVICE (device name), TYPE (device type), and
the NM_CONTROLLED=no option to disable Network Manager control to this device. The rest
are retained from the network card configuration file (BOOTPROTO and ONBOOT). Note that
there should not be a hardware address in this file. These values will set up the bridge to behave
like the network card: the ifcfg-br0 file acting as an extension of the ifcfg-eth0 file where the
BRIDGE=br0 is pointing to the ifcfg-br0 file.

4. Restart the network to verify that the configuration works. Note that if you configured the network
incorrectly, the network connection may drop and you may lose access to your machine. Check the
scripts once again carefully, and then restart the network by running the following command:

service network restart

5. Disable Netfilter processing in the bridged traffic. Append the following lines to the /etc/sysctl.conf file:

net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

Note: For more information about why disabling Netfilter processing is a good security measure, see the
"Network isolation options" section of the Securing KVM guests and the host system blueprint at
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaai/kvmsec/kvmsecstart.htm.

6. Reload the kernel parameters with the sysctl command:

sysctl -p
net.ipv4.ip_forward = 0
...
net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

7. Check that your network still has the same behavior as it did before you made the bridging changes.
However, now ifconfig has a different output. The following example shows the first two entries of
ifconfig in the test environment. Note that the bridge br0 now acts for eth0:

br0 Link encap:Ethernet HWaddr 00:14:5E:C2:1E:40
 inet addr:10.10.1.152 Bcast:10.10.1.255 Mask:255.255.255.0
 inet6 addr: fe80::214:5eff:fec2:1e40/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:125 errors:0 dropped:0 overruns:0 frame:0
 TX packets:81 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:16078 (15.7 KiB) TX bytes:18542 (18.1 KiB)
eth0 Link encap:Ethernet HWaddr 00:14:5E:C2:1E:40

http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaai/kvmsec/kvmsecstart.htm

 inet6 addr: fe80::214:5eff:fec2:1e40/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:206 errors:0 dropped:0 overruns:0 frame:0
 TX packets:58 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:27308 (26.6 KiB) TX bytes:13881 (13.5 KiB)
 Interrupt:74 Memory:da000000-da012800

You can also see this bridge by running the following command:

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes
br0 8000.000e0cb30550 no eth0

Results
Your Linux bridge should be up and running.

	KVM: Setting up a network bridge in the host
	About this task
	Procedure
	Results

